Ejemplo n.º 1
0
    def test_rgi_intersects(self):

        # Make a fake RGI file
        rgi_dir = os.path.join(self.dldir, 'rgi50')
        utils.mkdir(rgi_dir)
        make_fake_zipdir(os.path.join(rgi_dir, 'RGI_V5_Intersects'),
                         fakefile='Intersects_OGGM_Manifest.txt')
        make_fake_zipdir(os.path.join(rgi_dir, 'RGI_V5_Intersects',
                                      '11_rgi50_CentralEurope'),
                         fakefile='intersects_11_rgi50_CentralEurope.shp')
        make_fake_zipdir(os.path.join(rgi_dir, 'RGI_V5_Intersects',
                                      '00_rgi50_AllRegs'),
                         fakefile='intersects_rgi50_AllRegs.shp')
        rgi_f = make_fake_zipdir(rgi_dir)

        def down_check(url, cache_name=None, reset=False):
            expected = ('https://cluster.klima.uni-bremen.de/~fmaussion/rgi/' +
                        'RGI_V5_Intersects.zip')
            self.assertEqual(url, expected)
            return rgi_f

        with FakeDownloadManager('_progress_urlretrieve', down_check):
            rgi = utils.get_rgi_intersects_dir()
            utils.get_rgi_intersects_region_file('11', version='5')
            utils.get_rgi_intersects_region_file('00', version='5')

        assert os.path.isdir(rgi)
        assert os.path.exists(os.path.join(rgi,
                                           'Intersects_OGGM_Manifest.txt'))

        # Make a fake RGI file
        rgi_dir = os.path.join(self.dldir, 'rgi60')
        utils.mkdir(rgi_dir)
        make_fake_zipdir(os.path.join(rgi_dir, 'RGI_V6_Intersects'),
                         fakefile='Intersects_OGGM_Manifest.txt')
        rgi_f = make_fake_zipdir(rgi_dir)

        def down_check(url, cache_name=None, reset=False):
            expected = ('https://cluster.klima.uni-bremen.de/~fmaussion/rgi/' +
                        'RGI_V6_Intersects.zip')
            self.assertEqual(url, expected)
            return rgi_f

        with FakeDownloadManager('_progress_urlretrieve', down_check):
            rgi = utils.get_rgi_intersects_dir(version='6')

        assert os.path.isdir(rgi)
        assert os.path.exists(os.path.join(rgi,
                                           'Intersects_OGGM_Manifest.txt'))
Ejemplo n.º 2
0
from oggm.tests.funcs import get_test_dir
from oggm.core import gis, climate, centerlines, vascaling

# create temporary working directory
testdir = os.path.join(get_test_dir(), 'start_area')
if not os.path.exists(testdir):
    os.makedirs(testdir)
shutil.rmtree(testdir)
os.makedirs(testdir)

# load default parameter file
cfg.initialize()
# set path to working directory
cfg.PATHS['working_dir'] = testdir
# load and set path to intersects
path = utils.get_rgi_intersects_region_file('11', version='6')
cfg.set_intersects_db(path)

# change some default parameters
cfg.PARAMS['border'] = 50
cfg.PARAMS['baseline_climate'] = 'CRU'
cfg.PARAMS['use_multiprocessing'] = True

# get RGI entity for Hintereisferner
rgi_id = 'RGI60-11.00897'
entity = utils.get_rgi_glacier_entities([rgi_id]).iloc[0]

# initialize the GlacierDirectory
gdir = oggm.GlacierDirectory(entity, base_dir=testdir)

# define the local grid and glacier mask
Ejemplo n.º 3
0
def compute_scaling_params(rgi_ids, path=None):
    """ The routine computes scaling parameters by fitting a linear regression
    to the volume/area and volume/length scatter in log-log space, using the
    inversion volume, the RGI area and the longest centerline as "observations"
    Thereby, the following two cases apply:
    - compute only scaling constants, since scaling exponents have a physical
        basis and should not be changed
    - compute only scaling constants and scaling exponents

    Returns parameters in a 2-level dictionary. The upper level differentiates
    between the two cases, the lower level indicates the parameters.

    Parameters
    ----------
    rgi_ids: array-like
        List of RGI IDs for which the equilibrium experiments are performed.

    Returns
    -------
    Dictionary containing the computed parameters.

    """
    log.info('Starting scaling parameter computation')

    # compute RGI region and version from RGI IDs
    # assuming all they are all the same
    rgi_region = (rgi_ids[0].split('-')[-1]).split('.')[0]
    rgi_version = (rgi_ids[0].split('-')[0])[-2:-1]

    # load default parameter file
    vascaling.initialize()

    # get environmental variables for working and output directories
    WORKING_DIR = os.environ["WORKDIR"]
    OUTPUT_DIR = os.environ["OUTDIR"]
    # create working directory
    utils.mkdir(WORKING_DIR)
    utils.mkdir(OUTPUT_DIR)
    # set path to working directory
    cfg.PATHS['working_dir'] = WORKING_DIR
    # set RGI version and region
    cfg.PARAMS['rgi_version'] = rgi_version
    # define how many grid points to use around the glacier,
    # if you expect the glacier to grow large use a larger border
    cfg.PARAMS['border'] = 120
    # we use HistAlp climate data
    cfg.PARAMS['baseline_climate'] = 'HISTALP'
    # set the mb hyper parameters accordingly
    cfg.PARAMS['prcp_scaling_factor'] = 1.75
    cfg.PARAMS['temp_melt'] = -1.75
    # set minimum ice thickness to include in glacier length computation
    # this reduces weird spikes in length records
    cfg.PARAMS['min_ice_thick_for_length'] = 0.1

    # read RGI entry for the glaciers as DataFrame
    # containing the outline area as shapefile
    rgidf = utils.get_rgi_glacier_entities(rgi_ids)

    # get and set path to intersect shapefile
    intersects_db = utils.get_rgi_intersects_region_file(region=rgi_region)
    cfg.set_intersects_db(intersects_db)
    # the bias is defined to be zero during the calibration process,
    # which is why we don't use it here to reproduce the results
    cfg.PARAMS['use_bias_for_run'] = True

    # sort by area for more efficient parallel computing
    rgidf = rgidf.sort_values('Area', ascending=False)
    cfg.PARAMS['use_multiprocessing'] = True
    # operational run, all glaciers should run
    cfg.PARAMS['continue_on_error'] = True

    # initialize the GlacierDirectory
    gdirs = workflow.init_glacier_directories(rgidf, reset=False, force=True)

    # run gis tasks
    workflow.gis_prepro_tasks(gdirs)
    # run climate tasks
    workflow.execute_entity_task(climate.process_climate_data, gdirs)
    # compute local t* and the corresponding mu*
    workflow.execute_entity_task(climate.local_t_star, gdirs)
    workflow.execute_entity_task(climate.mu_star_calibration, gdirs)
    # run inversion tasks
    workflow.inversion_tasks(gdirs)
    # finalize preprocessing
    workflow.execute_entity_task(flowline.init_present_time_glacier, gdirs)

    # create empty dictionary
    params = dict()

    # compute scaling constants for given (fixed) slope
    params['const_only'] = vascaling.get_scaling_constant(gdirs)

    # compute scaling constants and scaling exponent via linear regression
    params['const_expo'] = vascaling.get_scaling_constant_exponent(gdirs)

    # store to file
    if path:
        if not isinstance(path, str):
            # set default path and filename
            path = os.path.join(OUTPUT_DIR, 'scaling_params.json')
        json.dump(params, open(path, 'w'))

    return params
Ejemplo n.º 4
0
def run_prepro_levels(rgi_version=None,
                      rgi_reg=None,
                      border=None,
                      output_folder='',
                      working_dir='',
                      dem_source='',
                      is_test=False,
                      demo=False,
                      test_rgidf=None,
                      test_intersects_file=None,
                      test_topofile=None,
                      test_crudir=None,
                      disable_mp=False,
                      timeout=0,
                      max_level=4,
                      logging_level='WORKFLOW'):
    """Does the actual job.

    Parameters
    ----------
    rgi_version : str
        the RGI version to use (defaults to cfg.PARAMS)
    rgi_reg : str
        the RGI region to process
    border : int
        the number of pixels at the maps border
    output_folder : str
        path to the output folder (where to put the preprocessed tar files)
    dem_source : str
        which DEM source to use: default, SOURCE_NAME or ALL
    working_dir : str
        path to the OGGM working directory
    is_test : bool
        to test on a couple of glaciers only!
    demo : bool
        to run the prepro for the list of demo glaciers
    test_rgidf : shapefile
        for testing purposes only
    test_intersects_file : shapefile
        for testing purposes only
    test_topofile : str
        for testing purposes only
    test_crudir : str
        for testing purposes only
    disable_mp : bool
        disable multiprocessing
    max_level : int
        the maximum pre-processing level before stopping
    logging_level : str
        the logging level to use (DEBUG, INFO, WARNING, WORKFLOW)
    """

    # TODO: temporarily silence Fiona deprecation warnings
    import warnings
    warnings.filterwarnings("ignore", category=DeprecationWarning)

    # Input check
    if max_level not in [1, 2, 3, 4]:
        raise InvalidParamsError('max_level should be one of [1, 2, 3, 4]')

    # Time
    start = time.time()

    def _time_log():
        # Log util
        m, s = divmod(time.time() - start, 60)
        h, m = divmod(m, 60)
        log.workflow('OGGM prepro_levels is done! Time needed: '
                     '{:02d}:{:02d}:{:02d}'.format(int(h), int(m), int(s)))

    # Initialize OGGM and set up the run parameters
    cfg.initialize(logging_level=logging_level)

    # Local paths
    utils.mkdir(working_dir)
    cfg.PATHS['working_dir'] = working_dir

    # Use multiprocessing?
    cfg.PARAMS['use_multiprocessing'] = not disable_mp

    # How many grid points around the glacier?
    # Make it large if you expect your glaciers to grow large
    cfg.PARAMS['border'] = border

    # Set to True for operational runs
    cfg.PARAMS['continue_on_error'] = True

    # Timeout
    cfg.PARAMS['task_timeout'] = timeout

    # For statistics
    climate_periods = [1920, 1960, 2000]

    if rgi_version is None:
        rgi_version = cfg.PARAMS['rgi_version']
    rgi_dir_name = 'RGI{}'.format(rgi_version)
    border_dir_name = 'b_{:03d}'.format(border)
    base_dir = os.path.join(output_folder, rgi_dir_name, border_dir_name)

    # Add a package version file
    utils.mkdir(base_dir)
    opath = os.path.join(base_dir, 'package_versions.txt')
    with open(opath, 'w') as vfile:
        vfile.write(utils.show_versions(logger=log))

    if demo:
        rgidf = utils.get_rgi_glacier_entities(cfg.DATA['demo_glaciers'].index)
    elif test_rgidf is None:
        # Get the RGI file
        rgidf = gpd.read_file(
            utils.get_rgi_region_file(rgi_reg, version=rgi_version))
        # We use intersects
        rgif = utils.get_rgi_intersects_region_file(rgi_reg,
                                                    version=rgi_version)
        cfg.set_intersects_db(rgif)
    else:
        rgidf = test_rgidf
        cfg.set_intersects_db(test_intersects_file)

    if is_test:
        # Just for fun
        rgidf = rgidf.sample(4)

    # Sort for more efficient parallel computing
    rgidf = rgidf.sort_values('Area', ascending=False)

    log.workflow('Starting prepro run for RGI reg: {} '
                 'and border: {}'.format(rgi_reg, border))
    log.workflow('Number of glaciers: {}'.format(len(rgidf)))

    # Input
    if test_topofile:
        cfg.PATHS['dem_file'] = test_topofile

    # L1 - initialize working directories
    # Which DEM source?
    if dem_source.upper() == 'ALL':
        # This is the complex one, just do the job an leave
        log.workflow('Running prepro on ALL sources')
        for i, s in enumerate(utils.DEM_SOURCES):
            rs = i == 0
            rgidf['DEM_SOURCE'] = s
            log.workflow('Running prepro on sources: {}'.format(s))
            gdirs = workflow.init_glacier_regions(rgidf, reset=rs, force=rs)
            workflow.execute_entity_task(_rename_dem_folder, gdirs, source=s)

        # Compress all in output directory
        l_base_dir = os.path.join(base_dir, 'L1')
        workflow.execute_entity_task(utils.gdir_to_tar,
                                     gdirs,
                                     delete=False,
                                     base_dir=l_base_dir)
        utils.base_dir_to_tar(l_base_dir)

        _time_log()
        return

    if dem_source:
        # Force a given source
        rgidf['DEM_SOURCE'] = dem_source.upper()

    # L1 - go
    gdirs = workflow.init_glacier_regions(rgidf, reset=True, force=True)

    # Glacier stats
    sum_dir = os.path.join(base_dir, 'L1', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # L1 OK - compress all in output directory
    l_base_dir = os.path.join(base_dir, 'L1')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=l_base_dir)
    utils.base_dir_to_tar(l_base_dir)
    if max_level == 1:
        _time_log()
        return

    # L2 - Tasks
    # Pre-download other files just in case
    if test_crudir is None:
        _ = utils.get_cru_file(var='tmp')
        _ = utils.get_cru_file(var='pre')
    else:
        cfg.PATHS['cru_dir'] = test_crudir

    workflow.execute_entity_task(tasks.process_cru_data, gdirs)

    # Glacier stats
    sum_dir = os.path.join(base_dir, 'L2', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # L2 OK - compress all in output directory
    l_base_dir = os.path.join(base_dir, 'L2')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=l_base_dir)
    utils.base_dir_to_tar(l_base_dir)
    if max_level == 2:
        _time_log()
        return

    # L3 - Tasks
    task_list = [
        tasks.glacier_masks, tasks.compute_centerlines,
        tasks.initialize_flowlines, tasks.compute_downstream_line,
        tasks.compute_downstream_bedshape, tasks.catchment_area,
        tasks.catchment_intersections, tasks.catchment_width_geom,
        tasks.catchment_width_correction, tasks.local_t_star,
        tasks.mu_star_calibration, tasks.prepare_for_inversion,
        tasks.mass_conservation_inversion, tasks.filter_inversion_output,
        tasks.init_present_time_glacier
    ]
    for task in task_list:
        workflow.execute_entity_task(task, gdirs)

    # Glacier stats
    sum_dir = os.path.join(base_dir, 'L3', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)
    opath = os.path.join(sum_dir, 'climate_statistics_{}.csv'.format(rgi_reg))
    utils.compile_climate_statistics(gdirs,
                                     add_climate_period=climate_periods,
                                     path=opath)

    # L3 OK - compress all in output directory
    l_base_dir = os.path.join(base_dir, 'L3')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=l_base_dir)
    utils.base_dir_to_tar(l_base_dir)
    if max_level == 3:
        _time_log()
        return

    # L4 - No tasks: add some stats for consistency and make the dirs small
    sum_dir = os.path.join(base_dir, 'L4', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # Copy mini data to new dir
    base_dir = os.path.join(base_dir, 'L4')
    mini_gdirs = workflow.execute_entity_task(tasks.copy_to_basedir,
                                              gdirs,
                                              base_dir=base_dir)

    # L4 OK - compress all in output directory
    workflow.execute_entity_task(utils.gdir_to_tar, mini_gdirs, delete=True)
    utils.base_dir_to_tar(base_dir)

    _time_log()
Ejemplo n.º 5
0
    # How many grid points around the glacier?
    cfg.PARAMS['border'] = 200

    # Set to True for operational runs
    cfg.PARAMS['continue_on_error'] = True

    cfg.PARAMS['run_mb_calibration'] = False
    cfg.PARAMS['optimize_inversion_params'] = False
    cfg.PARAMS['dl_verify'] = True

    # add to BASENAMES
    _doc = 'contains observed and searched glacier from synthetic experiment to find intial state'
    cfg.BASENAMES['synthetic_experiment'] = ('synthetic_experiment.pkl', _doc)

    # We use intersects
    db = utils.get_rgi_intersects_region_file(version='61', region=REGION)
    cfg.set_intersects_db(db)

    # RGI file
    path = utils.get_rgi_region_file(REGION, version='61')
    rgidf = gpd.read_file(path)
    rgidf = rgidf.sort_values('Area', ascending=False)

    # exclude non-landterminating glaciers
    rgidf = rgidf[rgidf.TermType == 0]
    rgidf = rgidf[rgidf.Connect != 2]

    wgms = utils.get_ref_mb_glaciers_candidates()

    # Keep only the wgms reference glaciers
    rgidf = rgidf.loc[rgidf.RGIId.isin(wgms)]
Ejemplo n.º 6
0
utils.mkdir(cfg.PATHS['working_dir'], reset=True)

df = pd.read_csv(g2ti.index_file, index_col=0)
df = df.loc[[rid for rid in df.index if ('-19.' not in rid) and ('-05.' not in rid)]]

for exp, fa in zip([1, 2, 3], [1.7, 1.3, 1.0]):

    sel_ids = df.loc[df['p{}'.format(exp)] == 1].index

    # For testing
    sel_ids = sel_ids[[14, 15, 16]]

    rgidf = utils.get_rgi_glacier_entities(sel_ids, version=version)

    # Add intersects
    db = utils.get_rgi_intersects_region_file(version='61', rgi_ids=sel_ids)
    cfg.set_intersects_db(db)

    # Sort for more efficient parallel computing
    rgidf = rgidf.sort_values('Area', ascending=False)

    log.info('Starting OGGM run')
    log.info('Number of glaciers: {}'.format(len(rgidf)))

    # Go - initialize working directories
    gdirs = workflow.init_glacier_regions(rgidf)

    # Preprocessing tasks
    task_list = [
        tasks.glacier_masks,
        tasks.compute_centerlines,
Ejemplo n.º 7
0
def run_benchmark(rgi_version=None, rgi_reg=None, border=None,
                  output_folder='', working_dir='', is_test=False,
                  test_rgidf=None, test_intersects_file=None,
                  test_topofile=None, test_crudir=None):
    """Does the actual job.

    Parameters
    ----------
    rgi_version : str
        the RGI version to use (defaults to cfg.PARAMS)
    rgi_reg : str
        the RGI region to process
    border : int
        the number of pixels at the maps border
    output_folder : str
        path to the output folder (where to put the preprocessed tar files)
    working_dir : str
        path to the OGGM working directory
    is_test : bool
        to test on a couple of glaciers only!
    test_rgidf : shapefile
        for testing purposes only
    test_intersects_file : shapefile
        for testing purposes only
    test_topofile : str
        for testing purposes only
    test_crudir : str
        for testing purposes only
    """

    # TODO: temporarily silence Fiona deprecation warnings
    import warnings
    warnings.filterwarnings("ignore", category=DeprecationWarning)

    # Module logger
    log = logging.getLogger(__name__)

    # Initialize OGGM and set up the run parameters
    cfg.initialize(logging_level='WORKFLOW')

    # Local paths
    utils.mkdir(working_dir)
    cfg.PATHS['working_dir'] = working_dir

    # Use multiprocessing?
    cfg.PARAMS['use_multiprocessing'] = True

    # How many grid points around the glacier?
    # Make it large if you expect your glaciers to grow large
    cfg.PARAMS['border'] = border

    # Set to True for operational runs
    cfg.PARAMS['continue_on_error'] = True

    # For statistics
    odf = pd.DataFrame()

    if rgi_version is None:
        rgi_version = cfg.PARAMS['rgi_version']
    base_dir = os.path.join(output_folder)

    # Add a package version file
    utils.mkdir(base_dir)
    opath = os.path.join(base_dir, 'package_versions.txt')
    with open(opath, 'w') as vfile:
        vfile.write(utils.show_versions(logger=log))

    # Read RGI
    start = time.time()
    if test_rgidf is None:
        # Get the RGI file
        rgidf = gpd.read_file(utils.get_rgi_region_file(rgi_reg,
                                                        version=rgi_version))
        # We use intersects
        rgif = utils.get_rgi_intersects_region_file(rgi_reg,
                                                    version=rgi_version)
        cfg.set_intersects_db(rgif)
    else:
        rgidf = test_rgidf
        cfg.set_intersects_db(test_intersects_file)

    if is_test:
        # Just for fun
        rgidf = rgidf.sample(2)
    _add_time_to_df(odf, 'Read RGI', time.time()-start)

    # Sort for more efficient parallel computing
    rgidf = rgidf.sort_values('Area', ascending=False)

    log.workflow('Starting prepro run for RGI reg: {} '
                 'and border: {}'.format(rgi_reg, border))
    log.workflow('Number of glaciers: {}'.format(len(rgidf)))

    # Input
    if test_topofile:
        cfg.PATHS['dem_file'] = test_topofile

    # Initialize working directories
    start = time.time()
    gdirs = workflow.init_glacier_regions(rgidf, reset=True, force=True)
    _add_time_to_df(odf, 'init_glacier_regions', time.time()-start)

    # Pre-download other files just in case
    if test_crudir is None:
        _ = utils.get_cru_file(var='tmp')
        _ = utils.get_cru_file(var='pre')
    else:
        cfg.PATHS['cru_dir'] = test_crudir

    # Tasks
    task_list = [
        tasks.process_cru_data,
        tasks.glacier_masks,
        tasks.compute_centerlines,
        tasks.initialize_flowlines,
        tasks.compute_downstream_line,
        tasks.compute_downstream_bedshape,
        tasks.catchment_area,
        tasks.catchment_intersections,
        tasks.catchment_width_geom,
        tasks.catchment_width_correction,
        tasks.local_t_star,
        tasks.mu_star_calibration,
        tasks.prepare_for_inversion,
        tasks.mass_conservation_inversion,
        tasks.filter_inversion_output,
        tasks.init_present_time_glacier,
    ]
    for task in task_list:
        start = time.time()
        workflow.execute_entity_task(task, gdirs)
        _add_time_to_df(odf, task.__name__, time.time()-start)

    # Runs
    start = time.time()
    workflow.execute_entity_task(tasks.run_random_climate, gdirs,
                                 nyears=250, bias=0, seed=0,
                                 output_filesuffix='_tstar')
    _add_time_to_df(odf, 'run_random_climate_tstar_250', time.time()-start)

    start = time.time()
    workflow.execute_entity_task(tasks.run_random_climate, gdirs,
                                 nyears=250, y0=1995, seed=0,
                                 output_filesuffix='_commit')
    _add_time_to_df(odf, 'run_random_climate_commit_250', time.time()-start)

    # Compile results
    start = time.time()
    utils.compile_glacier_statistics(gdirs)
    _add_time_to_df(odf, 'compile_glacier_statistics', time.time()-start)

    start = time.time()
    utils.compile_climate_statistics(gdirs,
                                     add_climate_period=[1920, 1960, 2000])
    _add_time_to_df(odf, 'compile_climate_statistics', time.time()-start)

    start = time.time()
    utils.compile_run_output(gdirs, filesuffix='_tstar')
    _add_time_to_df(odf, 'compile_run_output_tstar', time.time()-start)

    start = time.time()
    utils.compile_run_output(gdirs, filesuffix='_commit')
    _add_time_to_df(odf, 'compile_run_output_commit', time.time()-start)

    # Log
    opath = os.path.join(base_dir, 'benchmarks_b{:03d}.csv'.format(border))
    odf.index.name = 'Task'
    odf.to_csv(opath)
    log.workflow('OGGM benchmarks is done!')
Ejemplo n.º 8
0
def climate_run_fl(rgi_ids,
                   path=True,
                   temp_biases=[0, +0.5, -0.5],
                   use_bias_for_run=False,
                   suffixes=['_bias_zero', '_bias_p', '_bias_n'],
                   tstar=None,
                   nyears=None,
                   **kwargs):
    """Computes 'only' the massbalance in analogy to the `equilibrium_run_...`
    routines, without running the evolution (flowline) model.

    Dataset containing yearly values of specific mass balance is returned.

    Parameters
    ----------
    rgi_ids: array-like
        List of RGI IDs for which the equilibrium experiments are performed.
    path: bool or str, optional, default=True
        If a path is given (or True), the resulting dataset is stored to file.
    temp_biases: array-like, optional, default=(0, +0.5, -0.5)
        List of temperature biases (float, in degC) for the mass balance model.
    suffixes: array-like, optional, default=['_normal', '_bias_p', '_bias_n']
        Descriptive suffixes corresponding to the given temperature biases.
    tstar: float
        'Equilibrium year' used for the mass balance calibration.
    nyears: int, optional, default=None
        Number of years for which to compute the random mass balance
    kwargs:
        Additional key word arguments for massbalance model.

    Returns
    -------
    Dataset containing yearly values of specific massbalance.
    """

    # assert correct output file suffixes for temp biases
    if len(temp_biases) != len(suffixes):
        raise RuntimeError("Each given temperature bias must have its "
                           "corresponding suffix")

    # compute RGI region and version from RGI IDs
    # assuming all they are all the same
    rgi_region = (rgi_ids[0].split('-')[-1]).split('.')[0]
    rgi_version = (rgi_ids[0].split('-')[0])[-2:]

    # load default parameter file
    cfg.initialize()

    # create working directory
    wdir = '/Users/oberrauch/work/master/working_directories/'
    wdir += 'test_cluster'
    if not os.path.exists(wdir):
        os.makedirs(wdir)
    # shutil.rmtree(wdir)
    # os.makedirs(wdir)
    # set path to working directory
    cfg.PATHS['working_dir'] = wdir
    # set RGI verion and region
    cfg.PARAMS['rgi_version'] = rgi_version
    # define how many grid points to use around the glacier,
    # if you expect the glacier to grow large use a larger border
    cfg.PARAMS['border'] = 120
    # we use HistAlp climate data
    cfg.PARAMS['baseline_climate'] = 'HISTALP'
    # set the mb hyper parameters accordingly
    cfg.PARAMS['prcp_scaling_factor'] = 1.75
    cfg.PARAMS['temp_melt'] = -1.75
    # the bias is defined to be zero during the calibration process,
    # which is why we don't use it here to reproduce the results
    cfg.PARAMS['use_bias_for_run'] = use_bias_for_run

    # operational run, all glaciers should run
    cfg.PARAMS['continue_on_error'] = True

    # read RGI entry for the glaciers as DataFrame
    # containing the outline area as shapefile
    rgidf = utils.get_rgi_glacier_entities(rgi_ids)

    # get and set path to intersect shapefile
    intersects_db = utils.get_rgi_intersects_region_file(region=rgi_region)
    cfg.set_intersects_db(intersects_db)

    # initialize the GlacierDirectory
    gdirs = workflow.init_glacier_directories(rgidf, reset=False, force=True)

    # run gis tasks
    workflow.gis_prepro_tasks(gdirs)
    # run climate tasks
    workflow.execute_entity_task(climate.process_climate_data, gdirs)
    workflow.execute_entity_task(climate.local_t_star,
                                 gdirs,
                                 tstar=tstar,
                                 bias=0)
    workflow.execute_entity_task(climate.mu_star_calibration, gdirs)
    # run inversion tasks
    workflow.inversion_tasks(gdirs)
    # finalize preprocessing
    workflow.execute_entity_task(flowline.init_present_time_glacier, gdirs)

    # use t* as center year, even if specified differently
    kwargs['y0'] = tstar
    # run for 3000 years if not specified otherwise
    if nyears is None:
        nyears = 10000
    years = np.arange(0, nyears + 1)

    # create dataset
    ds = list()

    # run RandomMassBalance model centered around t*, once without
    # temperature bias and once with positive and negative temperature bias
    # of 0.5 °C each.
    for gdir in gdirs:
        # set random seed to get reproducible results
        kwargs.setdefault('seed', 12)
        kwargs.setdefault('halfsize', 15)
        kwargs.setdefault('mb_model_class', flowline.RandomMassBalance)
        kwargs.setdefault('filename', 'climate_historical')
        kwargs.setdefault('input_filesuffix', '')
        kwargs.setdefault('unique_samples', False)

        ds_ = list()

        fls = gdir.read_pickle('model_flowlines')

        for suffix, temp_bias in zip(suffixes, temp_biases):
            # instance mass balance model
            mb_mod = flowline.MultipleFlowlineMassBalance(gdir, **kwargs)

            if temp_bias is not None:
                # add given temperature bias to mass balance model
                mb_mod.temp_bias = temp_bias

            # create empty container
            spec_mb = list()
            # iterate over all years
            for yr in years:
                spec_mb.append(mb_mod.get_specific_mb(fls=fls, year=yr))

            # add to dataset
            da = xr.DataArray(spec_mb, dims=('year'), coords={'year': years})
            ds_.append(xr.Dataset({'spec_mb': da}))

        ds_ = xr.concat(ds_, pd.Index(temp_biases, name='temp_bias'))
        ds_.coords['rgi_id'] = gdir.rgi_id
        ds.append(ds_)

    ds = xr.concat(ds, 'rgi_id')

    # store datasets
    if path:
        if path is True:
            path = os.path.join(cfg.PATHS['working_dir'], 'mb_output_fl.nc')
        ds.to_netcdf(path)
        # ds_normal.to_netcdf(path[1])

    # return ds, ds_normal
    return ds
Ejemplo n.º 9
0
# Initialize OGGM and set up the default run parameters
cfg.initialize()

# Set to True for operational runs
cfg.PARAMS['continue_on_error'] = False

# Working directory
cfg.PATHS['working_dir'] = '/home/mowglie/disk/G2TI/vas_region'

geom_dir = g2ti.geometry_dir
flist = glob.glob(os.path.join(geom_dir, 'RGI60-{}'.format(region), '*'))

# For testing
flist = flist[:10]

cfg.set_intersects_db(utils.get_rgi_intersects_region_file(region=region,
                                                           version=version))
gdirs = g2tasks.parallel_define(flist)

# Preprocessing tasks
execute_entity_task(g2tasks.g2ti_masks, gdirs)
execute_entity_task(g2tasks.distribute_thickness_vas, gdirs,
                    vas_c=0.034,
                    slope_factor=0.7,
                    dis_factor=0.2,
                    write_tiff=True)

# Compile output
log.info('Compiling output')
utils.glacier_characteristics(gdirs)

# Log
def equilibrium_run_fl(rgi_ids,
                       use_random_mb=True,
                       path=True,
                       temp_biases=(0, +0.5, -0.5),
                       use_bias_for_run=False,
                       suffixes=['_bias_zero', '_bias_p', '_bias_n'],
                       store_individual_glaciers=True,
                       store_mean_sum=True,
                       tstar=None,
                       **kwargs):
    """ The routine runs all steps for the equilibrium experiments using the
    flowline model. For details see docstring of `sensitivity_run_vas`.

    Parameters
    ----------
    rgi_ids: array-like
        List of RGI IDs for which the equilibrium experiments are performed.
    use_random_mb: bool, optional, default=True
        Choose between random massbalance model and constant massbalance model.
    path: bool or str, optional, default=True
        If a path is given (or True), the resulting dataset is stored to file.
    temp_biases: array-like, optional, default=(0, +0.5, -0.5)
        List of temperature biases (float, in degC) for the mass balance model.
    suffixes: array-like, optional, default=['_normal', '_bias_p', '_bias_n']
        Descriptive suffixes corresponding to the given temperature biases.
    tstar: float
        'Equilibrium year' used for the mass balance calibration.
    kwargs:
        Additional key word arguments for the `run_random_climate` or
        `run_constant_climate` routines of the vascaling module.

    Returns
    -------
    Dataset containing yearly values of all glacier geometries.

    """
    # assert correct output file suffixes for temp biases
    if len(temp_biases) != len(suffixes):
        raise RuntimeError("Each given temperature bias must have its "
                           "corresponding suffix")

    # compute RGI region and version from RGI IDs
    # assuming all they are all the same
    rgi_region = (rgi_ids[0].split('-')[-1]).split('.')[0]
    rgi_version = (rgi_ids[0].split('-')[0])[-2:]

    # load default parameter file
    cfg.initialize()

    # create working directory
    WORKING_DIR = os.environ["WORKDIR"]
    utils.mkdir(WORKING_DIR)
    # set path to working directory
    cfg.PATHS['working_dir'] = WORKING_DIR
    # set RGI version and region
    cfg.PARAMS['rgi_version'] = rgi_version
    # define how many grid points to use around the glacier,
    # if you expect the glacier to grow large use a larger border
    cfg.PARAMS['border'] = 120
    # we use HistAlp climate data
    cfg.PARAMS['baseline_climate'] = 'HISTALP'
    # set the mb hyper parameters accordingly
    cfg.PARAMS['prcp_scaling_factor'] = 1.75
    cfg.PARAMS['temp_melt'] = -1.75
    # the bias is defined to be zero during the calibration process,
    # which is why we don't use it here to reproduce the results
    cfg.PARAMS['use_bias_for_run'] = use_bias_for_run

    # read RGI entry for the glaciers as DataFrame
    # containing the outline area as shapefile
    rgidf = utils.get_rgi_glacier_entities(rgi_ids)

    # get and set path to intersect shapefile
    intersects_db = utils.get_rgi_intersects_region_file(region=rgi_region)
    cfg.set_intersects_db(intersects_db)

    # sort by area for more efficient parallel computing
    rgidf = rgidf.sort_values('Area', ascending=False)
    cfg.PARAMS['use_multiprocessing'] = True
    # operational run, all glaciers should run
    cfg.PARAMS['continue_on_error'] = True

    # initialize the GlacierDirectory
    gdirs = workflow.init_glacier_directories(rgidf, reset=False, force=True)

    # run gis tasks
    workflow.gis_prepro_tasks(gdirs)
    # run climate tasks
    workflow.execute_entity_task(climate.process_climate_data, gdirs)
    ref_df = pd.read_csv(
        utils.get_demo_file('oggm_ref_tstars_rgi6_histalp.csv'))
    workflow.execute_entity_task(climate.local_t_star,
                                 gdirs,
                                 ref_df=ref_df,
                                 tstar=tstar,
                                 bias=0)
    workflow.execute_entity_task(climate.mu_star_calibration, gdirs)
    # run inversion tasks
    workflow.inversion_tasks(gdirs)
    # finalize preprocessing
    workflow.execute_entity_task(flowline.init_present_time_glacier, gdirs)

    # use t* as center year, even if specified differently
    kwargs['y0'] = tstar
    # run for 3000 years if not specified otherwise
    kwargs.setdefault('nyears', 3000)
    # disregard glaciers exceeding their domain boundaries
    # to not dirsupt the entire run
    kwargs.setdefault('check_for_boundaries', True)

    if use_random_mb:
        # set random seed to get reproducible results
        kwargs.setdefault('seed', 12)

        # run RandomMassBalance model centered around t*, once without
        # temperature bias and once with positive and negative temperature bias
        # of 0.5 °C each.
        for suffix, temp_bias in zip(suffixes, temp_biases):
            workflow.execute_entity_task(
                flowline.run_random_climate,
                gdirs,
                temperature_bias=temp_bias,
                output_filesuffix=suffix,
                **kwargs,
            )
    else:
        # run RandomMassBalance model centered around t*, once without
        # temperature bias and once with positive and negative temperature bias
        # of 0.5 °C each.
        for suffix, temp_bias in zip(suffixes, temp_biases):
            workflow.execute_entity_task(
                flowline.run_constant_climate,
                gdirs,
                temperature_bias=temp_bias,
                output_filesuffix=suffix,
                **kwargs,
            )

    ds = list()
    for suffix, temp_bias in zip(suffixes, temp_biases):
        # compile the output for each run and store to file
        ds_ = utils.compile_run_output(np.atleast_1d(gdirs),
                                       input_filesuffix=suffix,
                                       path=False)
        ds.append(ds_)

    # concat into one dataset with temperature bias as coordinate
    if ds:
        ds = xr.concat(ds, pd.Index(temp_biases, name='temp_bias'))
        # add model type as coordinate
        ds.coords['model'] = 'fl'
        # add mb model type as coordinate
        ds.coords['mb_model'] = 'random' if use_random_mb else 'constant'

        # fill NaN values (which happen for vanished glaciers) with zero
        ds = ds.fillna(0)

        if store_individual_glaciers:
            if store_mean_sum:
                # compute mean and sum over all glaciers
                ds_mean = ds.mean(dim='rgi_id')
                ds_mean.coords['rgi_id'] = 'mean'
                ds_sum = ds.sum(dim='rgi_id')
                ds_sum.coords['rgi_id'] = 'sum'
                # add to dataset
                ds = xr.concat([ds, ds_mean, ds_sum], dim='rgi_id')
            else:
                pass
        else:
            # compute mean and sum over all glaciers
            ds_mean = ds.mean(dim='rgi_id')
            ds_mean.coords['rgi_id'] = 'mean'
            ds_sum = ds.sum(dim='rgi_id')
            ds_sum.coords['rgi_id'] = 'sum'
            # add to dataset
            ds = xr.concat([ds_mean, ds_sum], dim='rgi_id')

        # normalize glacier geometries (length/area/volume) with start value
        ds_normal = normalize_ds_with_start(ds)
        # add coordinate to distinguish between normalized and absolute values
        ds.coords['normalized'] = int(False)
        ds_normal.coords['normalized'] = int(True)

        # combine datasets
        ds = xr.concat([ds, ds_normal], 'normalized')

        # store datasets
        if path:
            if path is True:
                mb = 'random' if use_random_mb else 'constant'
                path = os.path.join(cfg.PATHS['working_dir'],
                                    'run_output_{}_fl.nc'.format(mb))

            ds.to_netcdf(path)

    return ds
Ejemplo n.º 11
0
def climate_run_vas(rgi_ids, path=True, temp_biases=[0, +0.5, -0.5],
                    suffixes=['_bias_zero', '_bias_p', '_bias_n'],
                    use_bias_for_run=False, use_default_tstar=True,
                    tstar=None, nyears=None, **kwargs):
    """Computes 'only' the massbalance in analogy to the `equilibrium_run_...`
    routines, without running the (volume/area scaling) evolution model.

    Dataset containing yearly values of specific mass balance is returned.

    Note: the task is not parallelized, hence it can take long if many glaciers
    are given. TODO: could/should be fixed sometime...
    TODO: add logging information

    Parameters
    ----------
    rgi_ids: array-like
        List of RGI IDs for which the equilibrium experiments are performed.
    path: bool or str, optional, default=True
        If a path is given (or True), the resulting dataset is stored to file.
    temp_biases: array-like, optional, default=(0, +0.5, -0.5)
        List of temperature biases (float, in degC) for the mass balance model.
    suffixes: array-like, optional, default=['_normal', '_bias_p', '_bias_n']
        Descriptive suffixes corresponding to the given temperature biases.
    use_bias_for_run: bool, optional, default=False
        Flag deciding whether or not the mass balance residual is used
    tstar: float, optional, default=None
        'Equilibrium year' used for the mass balance calibration. Using the
        `ref_tstars.csv` table if not supplied.
    use_default_tstar : bool, optional, default=True
        Flag deciding whether or not to use the default ref_tstar.csv list. If
        `False`the `oggm_ref_tstars_rgi6_histalp.csv` reference table is used.
    nyears: int, optional, default=None
        Number of years for which to compute the random mass balance
    kwargs:
        Additional key word arguments for massbalance model.

    Returns
    -------
    Dataset containing yearly values of specific massbalance.

    """
    # assert correct output file suffixes for temp biases
    if len(temp_biases) != len(suffixes):
        raise RuntimeError("Each given temperature bias must have its "
                           "corresponding suffix")

    # compute RGI region and version from RGI IDs
    # assuming all they are all the same
    rgi_region = (rgi_ids[0].split('-')[-1]).split('.')[0]
    rgi_version = (rgi_ids[0].split('-')[0])[-2:-1]

    # load default parameter file
    cfg.initialize()

    # get environmental variables for working and output directories
    WORKING_DIR = os.environ["WORKDIR"]
    OUTPUT_DIR = os.environ["OUTDIR"]
    # create working directory
    utils.mkdir(WORKING_DIR)
    # set path to working directory
    cfg.PATHS['working_dir'] = WORKING_DIR
    # set RGI version and region
    cfg.PARAMS['rgi_version'] = rgi_version
    # define how many grid points to use around the glacier,
    # if you expect the glacier to grow large use a larger border
    cfg.PARAMS['border'] = 120
    # we use HistAlp climate data
    cfg.PARAMS['baseline_climate'] = 'HISTALP'
    # set the mb hyper parameters accordingly
    cfg.PARAMS['prcp_scaling_factor'] = 2.5
    cfg.PARAMS['temp_melt'] = -0.5
    # the bias is defined to be zero during the calibration process,
    # which is why we don't use it here to reproduce the results
    cfg.PARAMS['use_bias_for_run'] = use_bias_for_run

    # operational run, all glaciers should run
    cfg.PARAMS['continue_on_error'] = False

    # read RGI entry for the glaciers as DataFrame
    # containing the outline area as shapefile
    rgidf = utils.get_rgi_glacier_entities(rgi_ids)

    # get and set path to intersect shapefile
    intersects_db = utils.get_rgi_intersects_region_file(region=rgi_region)
    cfg.set_intersects_db(intersects_db)

    # initialize the GlacierDirectory
    gdirs = workflow.init_glacier_directories(rgidf, reset=False, force=True)

    # define the local grid and glacier mask
    workflow.execute_entity_task(gis.define_glacier_region, gdirs)
    workflow.execute_entity_task(gis.glacier_masks, gdirs)
    # process the given climate file
    workflow.execute_entity_task(climate.process_climate_data, gdirs)
    # compute local t* and the corresponding mu*
    if tstar or use_default_tstar:
        # compute mustar from given tstar
        workflow.execute_entity_task(vascaling.local_t_star, gdirs, tstar=tstar, bias=0)
    else:
        # compute mustar from the reference table for the flowline model
        # RGI v6 and HISTALP baseline climate
        ref_df = pd.read_csv(utils.get_demo_file('oggm_ref_tstars_rgi6_histalp.csv'))
        workflow.execute_entity_task(vascaling.local_t_star, gdirs, ref_df=ref_df)

    # use t* as center year, even if specified differently
    kwargs['y0'] = tstar
    # run for 10'000 years if not specified otherwise
    if nyears is None:
        nyears = 1e4
    years = np.arange(0, nyears + 1)

    # create dataset
    ds = list()

    # run RandomMassBalance model centered around t*, once without
    # temperature bias and once with positive and negative temperature bias
    # of 0.5 deg C each.
    for gdir in gdirs:
        # set random seed to get reproducible results
        kwargs.setdefault('halfsize', 15)
        kwargs.setdefault('filename', 'climate_historical')
        kwargs.setdefault('input_filesuffix', '')

        ds_ = list()

        for suffix, temp_bias in zip(suffixes, temp_biases):
            # instance mass balance model
            try:
                mb_mod = vascaling.ConstantVASMassBalance(gdir, **kwargs)
            except:
                # continue with the next glacier or raise exception
                # depending on `continue_on_error` flag
                if cfg.PARAMS['continue_on_error']:
                    continue
                else:
                    raise

            if temp_bias is not None:
                # add given temperature bias to mass balance model
                mb_mod.temp_bias = temp_bias

            # where to store the model output
            diag_path = gdir.get_filepath('model_diagnostics',
                                          filesuffix='_vas',
                                          delete=True)

            # get minimum and maximum glacier elevation
            min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir)
            # create empty container
            spec_mb = list()
            # iterate over all years
            for yr in years:
                spec_mb.append(mb_mod.get_specific_mb(min_hgt, max_hgt, yr))

            # add to dataset
            da = xr.DataArray(spec_mb, dims=('year'), coords={'year': years})
            ds_.append(xr.Dataset({'spec_mb': da}))

        if ds_:
            ds_ = xr.concat(ds_, pd.Index(temp_biases, name='temp_bias'))
            ds_.coords['rgi_id'] = gdir.rgi_id
            ds.append(ds_)

    if ds:
        # combine output from single glaciers into one dataset
        ds = xr.concat(ds, 'rgi_id')

        # store datasets
        if path:
            if path is True:
                path = os.path.join(OUTPUT_DIR, 'mb_output_vas.nc')
            ds.to_netcdf(path)

    # return ds, ds_normal
    return ds
Ejemplo n.º 12
0
def run_prepro_levels(rgi_version=None,
                      rgi_reg=None,
                      border=None,
                      output_folder='',
                      working_dir='',
                      dem_source='',
                      is_test=False,
                      test_ids=None,
                      demo=False,
                      test_rgidf=None,
                      test_intersects_file=None,
                      test_topofile=None,
                      disable_mp=False,
                      params_file=None,
                      elev_bands=False,
                      match_geodetic_mb=False,
                      centerlines_only=False,
                      add_consensus=False,
                      max_level=5,
                      logging_level='WORKFLOW',
                      disable_dl_verify=False):
    """Does the actual job.

    Parameters
    ----------
    rgi_version : str
        the RGI version to use (defaults to cfg.PARAMS)
    rgi_reg : str
        the RGI region to process
    border : int
        the number of pixels at the maps border
    output_folder : str
        path to the output folder (where to put the preprocessed tar files)
    dem_source : str
        which DEM source to use: default, SOURCE_NAME or ALL
    working_dir : str
        path to the OGGM working directory
    params_file : str
        path to the OGGM parameter file (to override defaults)
    is_test : bool
        to test on a couple of glaciers only!
    test_ids : list
        if is_test: list of ids to process
    demo : bool
        to run the prepro for the list of demo glaciers
    test_rgidf : shapefile
        for testing purposes only
    test_intersects_file : shapefile
        for testing purposes only
    test_topofile : str
        for testing purposes only
    test_crudir : str
        for testing purposes only
    disable_mp : bool
        disable multiprocessing
    elev_bands : bool
        compute all flowlines based on the Huss&Hock 2015 method instead
        of the OGGM default, which is a mix of elev_bands and centerlines.
    centerlines_only : bool
        compute all flowlines based on the OGGM centerline(s) method instead
        of the OGGM default, which is a mix of elev_bands and centerlines.
    match_geodetic_mb : bool
        match the regional mass-balance estimates at the regional level
        (currently Hugonnet et al., 2020).
    add_consensus : bool
        adds (reprojects) the consensus estimates thickness to the glacier
        directories. With elev_bands=True, the data will also be binned.
    max_level : int
        the maximum pre-processing level before stopping
    logging_level : str
        the logging level to use (DEBUG, INFO, WARNING, WORKFLOW)
    disable_dl_verify : bool
        disable the hash verification of OGGM downloads
    """

    # TODO: temporarily silence Fiona and other deprecation warnings
    import warnings
    warnings.filterwarnings("ignore", category=DeprecationWarning)

    # Input check
    if max_level not in [1, 2, 3, 4, 5]:
        raise InvalidParamsError('max_level should be one of [1, 2, 3, 4, 5]')

    # Time
    start = time.time()

    def _time_log():
        # Log util
        m, s = divmod(time.time() - start, 60)
        h, m = divmod(m, 60)
        log.workflow('OGGM prepro_levels is done! Time needed: '
                     '{:02d}:{:02d}:{:02d}'.format(int(h), int(m), int(s)))

    # Config Override Params
    params = {}

    # Local paths
    utils.mkdir(working_dir)
    params['working_dir'] = working_dir

    # Initialize OGGM and set up the run parameters
    cfg.initialize(file=params_file,
                   params=params,
                   logging_level=logging_level,
                   future=True)

    # Use multiprocessing?
    cfg.PARAMS['use_multiprocessing'] = not disable_mp

    # How many grid points around the glacier?
    # Make it large if you expect your glaciers to grow large
    cfg.PARAMS['border'] = border

    # Set to True for operational runs
    cfg.PARAMS['continue_on_error'] = True

    # Check for the integrity of the files OGGM downloads at run time
    # For large files (e.g. using a 1 tif DEM like ALASKA) calculating the hash
    # takes a long time, so deactivating this can make sense
    cfg.PARAMS['dl_verify'] = not disable_dl_verify

    # Log the parameters
    msg = '# OGGM Run parameters:'
    for k, v in cfg.PARAMS.items():
        if type(v) in [pd.DataFrame, dict]:
            continue
        msg += '\n    {}: {}'.format(k, v)
    log.workflow(msg)

    if rgi_version is None:
        rgi_version = cfg.PARAMS['rgi_version']
    output_base_dir = os.path.join(output_folder, 'RGI{}'.format(rgi_version),
                                   'b_{:03d}'.format(border))

    # Add a package version file
    utils.mkdir(output_base_dir)
    opath = os.path.join(output_base_dir, 'package_versions.txt')
    with open(opath, 'w') as vfile:
        vfile.write(utils.show_versions(logger=log))

    if demo:
        rgidf = utils.get_rgi_glacier_entities(cfg.DATA['demo_glaciers'].index)
    elif test_rgidf is None:
        # Get the RGI file
        rgidf = gpd.read_file(
            utils.get_rgi_region_file(rgi_reg, version=rgi_version))
        # We use intersects
        rgif = utils.get_rgi_intersects_region_file(rgi_reg,
                                                    version=rgi_version)
        cfg.set_intersects_db(rgif)

        # Some RGI input quality checks - this is based on visual checks
        # of large glaciers in the RGI
        ids_to_ice_cap = [
            'RGI60-05.10315',  # huge Greenland ice cap
            'RGI60-03.01466',  # strange thing next to Devon
            'RGI60-09.00918',  # Academy of sciences Ice cap
            'RGI60-09.00969',
            'RGI60-09.00958',
            'RGI60-09.00957',
        ]
        rgidf.loc[rgidf.RGIId.isin(ids_to_ice_cap), 'Form'] = '1'

        # In AA almost all large ice bodies are actually ice caps
        if rgi_reg == '19':
            rgidf.loc[rgidf.Area > 100, 'Form'] = '1'

        # For greenland we omit connectivity level 2
        if rgi_reg == '05':
            rgidf = rgidf.loc[rgidf['Connect'] != 2]
    else:
        rgidf = test_rgidf
        cfg.set_intersects_db(test_intersects_file)

    if is_test:
        if test_ids is not None:
            rgidf = rgidf.loc[rgidf.RGIId.isin(test_ids)]
        else:
            rgidf = rgidf.sample(4)

    log.workflow('Starting prepro run for RGI reg: {} '
                 'and border: {}'.format(rgi_reg, border))
    log.workflow('Number of glaciers: {}'.format(len(rgidf)))

    # L0 - go
    gdirs = workflow.init_glacier_directories(rgidf, reset=True, force=True)

    # Glacier stats
    sum_dir = os.path.join(output_base_dir, 'L0', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # L0 OK - compress all in output directory
    log.workflow('L0 done. Writing to tar...')
    level_base_dir = os.path.join(output_base_dir, 'L0')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=level_base_dir)
    utils.base_dir_to_tar(level_base_dir)
    if max_level == 0:
        _time_log()
        return

    # L1 - Add dem files
    if test_topofile:
        cfg.PATHS['dem_file'] = test_topofile

    # Which DEM source?
    if dem_source.upper() == 'ALL':
        # This is the complex one, just do the job and leave
        log.workflow('Running prepro on ALL sources')
        for i, s in enumerate(utils.DEM_SOURCES):
            rs = i == 0
            log.workflow('Running prepro on sources: {}'.format(s))
            gdirs = workflow.init_glacier_directories(rgidf,
                                                      reset=rs,
                                                      force=rs)
            workflow.execute_entity_task(tasks.define_glacier_region,
                                         gdirs,
                                         source=s)
            workflow.execute_entity_task(_rename_dem_folder, gdirs, source=s)

        # make a GeoTiff mask of the glacier, choose any source
        workflow.execute_entity_task(gis.rasterio_glacier_mask,
                                     gdirs,
                                     source='ALL')

        # Compress all in output directory
        level_base_dir = os.path.join(output_base_dir, 'L1')
        workflow.execute_entity_task(utils.gdir_to_tar,
                                     gdirs,
                                     delete=False,
                                     base_dir=level_base_dir)
        utils.base_dir_to_tar(level_base_dir)

        _time_log()
        return

    # Force a given source
    source = dem_source.upper() if dem_source else None

    # L1 - go
    workflow.execute_entity_task(tasks.define_glacier_region,
                                 gdirs,
                                 source=source)

    # Glacier stats
    sum_dir = os.path.join(output_base_dir, 'L1', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # L1 OK - compress all in output directory
    log.workflow('L1 done. Writing to tar...')
    level_base_dir = os.path.join(output_base_dir, 'L1')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=level_base_dir)
    utils.base_dir_to_tar(level_base_dir)
    if max_level == 1:
        _time_log()
        return

    # L2 - Tasks
    # Check which glaciers will be processed as what
    if elev_bands:
        gdirs_band = gdirs
        gdirs_cent = []
    elif centerlines_only:
        gdirs_band = []
        gdirs_cent = gdirs
    else:
        # Default is to mix
        # Curated list of large (> 50 km2) glaciers that don't run
        # (CFL error) mostly because the centerlines are crap
        # This is a really temporary fix until we have some better
        # solution here
        ids_to_bands = [
            'RGI60-01.13696', 'RGI60-03.01710', 'RGI60-01.13635',
            'RGI60-01.14443', 'RGI60-03.01678', 'RGI60-03.03274',
            'RGI60-01.17566', 'RGI60-03.02849', 'RGI60-01.16201',
            'RGI60-01.14683', 'RGI60-07.01506', 'RGI60-07.01559',
            'RGI60-03.02687', 'RGI60-17.00172', 'RGI60-01.23649',
            'RGI60-09.00077', 'RGI60-03.00994', 'RGI60-01.26738',
            'RGI60-03.00283', 'RGI60-01.16121', 'RGI60-01.27108',
            'RGI60-09.00132', 'RGI60-13.43483', 'RGI60-09.00069',
            'RGI60-14.04404', 'RGI60-17.01218', 'RGI60-17.15877',
            'RGI60-13.30888', 'RGI60-17.13796', 'RGI60-17.15825',
            'RGI60-01.09783'
        ]
        if rgi_reg == '19':
            gdirs_band = gdirs
            gdirs_cent = []
        else:
            gdirs_band = []
            gdirs_cent = []
            for gdir in gdirs:
                if gdir.is_icecap or gdir.rgi_id in ids_to_bands:
                    gdirs_band.append(gdir)
                else:
                    gdirs_cent.append(gdir)

    log.workflow('Start flowline processing with: '
                 'N centerline type: {}, '
                 'N elev bands type: {}.'
                 ''.format(len(gdirs_cent), len(gdirs_band)))

    # HH2015 method
    workflow.execute_entity_task(tasks.simple_glacier_masks, gdirs_band)

    # Centerlines OGGM
    workflow.execute_entity_task(tasks.glacier_masks, gdirs_cent)

    if add_consensus:
        from oggm.shop.bedtopo import add_consensus_thickness
        workflow.execute_entity_task(add_consensus_thickness, gdirs_band)
        workflow.execute_entity_task(add_consensus_thickness, gdirs_cent)

        # Elev bands with var data
        vn = 'consensus_ice_thickness'
        workflow.execute_entity_task(tasks.elevation_band_flowline,
                                     gdirs_band,
                                     bin_variables=vn)
        workflow.execute_entity_task(tasks.fixed_dx_elevation_band_flowline,
                                     gdirs_band,
                                     bin_variables=vn)
    else:
        # HH2015 method without it
        task_list = [
            tasks.elevation_band_flowline,
            tasks.fixed_dx_elevation_band_flowline,
        ]
        for task in task_list:
            workflow.execute_entity_task(task, gdirs_band)

    # HH2015 method
    task_list = [
        tasks.compute_downstream_line,
        tasks.compute_downstream_bedshape,
    ]
    for task in task_list:
        workflow.execute_entity_task(task, gdirs_band)

    # Centerlines OGGM
    task_list = [
        tasks.compute_centerlines,
        tasks.initialize_flowlines,
        tasks.compute_downstream_line,
        tasks.compute_downstream_bedshape,
        tasks.catchment_area,
        tasks.catchment_intersections,
        tasks.catchment_width_geom,
        tasks.catchment_width_correction,
    ]
    for task in task_list:
        workflow.execute_entity_task(task, gdirs_cent)

    # Glacier stats
    sum_dir = os.path.join(output_base_dir, 'L2', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # L2 OK - compress all in output directory
    log.workflow('L2 done. Writing to tar...')
    level_base_dir = os.path.join(output_base_dir, 'L2')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=level_base_dir)
    utils.base_dir_to_tar(level_base_dir)
    if max_level == 2:
        _time_log()
        return

    # L3 - Tasks
    task_list = [
        tasks.process_climate_data,
        tasks.historical_climate_qc,
        tasks.local_t_star,
        tasks.mu_star_calibration,
    ]
    for task in task_list:
        workflow.execute_entity_task(task, gdirs)

    # Inversion: we match the consensus
    workflow.calibrate_inversion_from_consensus(gdirs,
                                                apply_fs_on_mismatch=True,
                                                error_on_mismatch=False)

    # Do we want to match geodetic estimates?
    # This affects only the bias so we can actually do this *after*
    # the inversion, but we really want to take calving into account here
    if match_geodetic_mb:
        workflow.match_regional_geodetic_mb(gdirs, rgi_reg)

    # We get ready for modelling
    workflow.execute_entity_task(tasks.init_present_time_glacier, gdirs)

    # Glacier stats
    sum_dir = os.path.join(output_base_dir, 'L3', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)
    opath = os.path.join(sum_dir, 'climate_statistics_{}.csv'.format(rgi_reg))
    utils.compile_climate_statistics(gdirs, path=opath)
    opath = os.path.join(sum_dir,
                         'fixed_geometry_mass_balance_{}.csv'.format(rgi_reg))
    utils.compile_fixed_geometry_mass_balance(gdirs, path=opath)

    # L3 OK - compress all in output directory
    log.workflow('L3 done. Writing to tar...')
    level_base_dir = os.path.join(output_base_dir, 'L3')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=level_base_dir)
    utils.base_dir_to_tar(level_base_dir)
    if max_level == 3:
        _time_log()
        return

    # L4 - No tasks: add some stats for consistency and make the dirs small
    sum_dir_L3 = sum_dir
    sum_dir = os.path.join(output_base_dir, 'L4', 'summary')
    utils.mkdir(sum_dir)

    # Copy L3 files for consistency
    for bn in [
            'glacier_statistics', 'climate_statistics',
            'fixed_geometry_mass_balance'
    ]:
        ipath = os.path.join(sum_dir_L3, bn + '_{}.csv'.format(rgi_reg))
        opath = os.path.join(sum_dir, bn + '_{}.csv'.format(rgi_reg))
        shutil.copyfile(ipath, opath)

    # Copy mini data to new dir
    mini_base_dir = os.path.join(working_dir, 'mini_perglacier')
    mini_gdirs = workflow.execute_entity_task(tasks.copy_to_basedir,
                                              gdirs,
                                              base_dir=mini_base_dir)

    # L4 OK - compress all in output directory
    log.workflow('L4 done. Writing to tar...')
    level_base_dir = os.path.join(output_base_dir, 'L4')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 mini_gdirs,
                                 delete=False,
                                 base_dir=level_base_dir)
    utils.base_dir_to_tar(level_base_dir)
    if max_level == 4:
        _time_log()
        return

    # L5 - spinup run in mini gdirs
    gdirs = mini_gdirs

    # Get end date. The first gdir might have blown up, try some others
    i = 0
    while True:
        if i >= len(gdirs):
            raise RuntimeError('Found no valid glaciers!')
        try:
            y0 = gdirs[i].get_climate_info()['baseline_hydro_yr_0']
            # One adds 1 because the run ends at the end of the year
            ye = gdirs[i].get_climate_info()['baseline_hydro_yr_1'] + 1
            break
        except BaseException:
            i += 1

    # OK - run
    workflow.execute_entity_task(tasks.run_from_climate_data,
                                 gdirs,
                                 min_ys=y0,
                                 ye=ye,
                                 output_filesuffix='_historical')

    # Now compile the output
    sum_dir = os.path.join(output_base_dir, 'L5', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir,
                         'historical_run_output_{}.nc'.format(rgi_reg))
    utils.compile_run_output(gdirs, path=opath, input_filesuffix='_historical')

    # Glacier statistics we recompute here for error analysis
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # Other stats for consistency
    for bn in ['climate_statistics', 'fixed_geometry_mass_balance']:
        ipath = os.path.join(sum_dir_L3, bn + '_{}.csv'.format(rgi_reg))
        opath = os.path.join(sum_dir, bn + '_{}.csv'.format(rgi_reg))
        shutil.copyfile(ipath, opath)

    # Add the extended files
    pf = os.path.join(sum_dir, 'historical_run_output_{}.nc'.format(rgi_reg))
    mf = os.path.join(sum_dir,
                      'fixed_geometry_mass_balance_{}.csv'.format(rgi_reg))
    # This is crucial - extending calving only with L3 data!!!
    sf = os.path.join(sum_dir_L3, 'glacier_statistics_{}.csv'.format(rgi_reg))
    opath = os.path.join(
        sum_dir, 'historical_run_output_extended_{}.nc'.format(rgi_reg))
    utils.extend_past_climate_run(past_run_file=pf,
                                  fixed_geometry_mb_file=mf,
                                  glacier_statistics_file=sf,
                                  path=opath)

    # L5 OK - compress all in output directory
    log.workflow('L5 done. Writing to tar...')
    level_base_dir = os.path.join(output_base_dir, 'L5')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=level_base_dir)
    utils.base_dir_to_tar(level_base_dir)

    _time_log()
Ejemplo n.º 13
0
def run_prepro_levels(rgi_version=None,
                      rgi_reg=None,
                      border=None,
                      output_folder='',
                      working_dir='',
                      is_test=False,
                      demo=False,
                      test_rgidf=None,
                      test_intersects_file=None,
                      test_topofile=None,
                      test_crudir=None):
    """Does the actual job.

    Parameters
    ----------
    rgi_version : str
        the RGI version to use (defaults to cfg.PARAMS)
    rgi_reg : str
        the RGI region to process
    border : int
        the number of pixels at the maps border
    output_folder : str
        path to the output folder (where to put the preprocessed tar files)
    working_dir : str
        path to the OGGM working directory
    is_test : bool
        to test on a couple of glaciers only!
    demo : bool
        to run the prepro for the list of demo glaciers
    test_rgidf : shapefile
        for testing purposes only
    test_intersects_file : shapefile
        for testing purposes only
    test_topofile : str
        for testing purposes only
    test_crudir : str
        for testing purposes only
    """

    # TODO: temporarily silence Fiona deprecation warnings
    import warnings
    warnings.filterwarnings("ignore", category=DeprecationWarning)

    # Module logger
    log = logging.getLogger(__name__)

    # Time
    start = time.time()

    # Initialize OGGM and set up the run parameters
    cfg.initialize(logging_level='WORKFLOW')

    # Local paths
    utils.mkdir(working_dir)
    cfg.PATHS['working_dir'] = working_dir

    # Use multiprocessing?
    cfg.PARAMS['use_multiprocessing'] = True

    # How many grid points around the glacier?
    # Make it large if you expect your glaciers to grow large
    cfg.PARAMS['border'] = border

    # Set to True for operational runs
    cfg.PARAMS['continue_on_error'] = True

    # For statistics
    climate_periods = [1920, 1960, 2000]

    if rgi_version is None:
        rgi_version = cfg.PARAMS['rgi_version']
    rgi_dir_name = 'RGI{}'.format(rgi_version)
    border_dir_name = 'b_{:03d}'.format(border)
    base_dir = os.path.join(output_folder, rgi_dir_name, border_dir_name)

    # Add a package version file
    utils.mkdir(base_dir)
    opath = os.path.join(base_dir, 'package_versions.txt')
    with open(opath, 'w') as vfile:
        vfile.write(utils.show_versions(logger=log))

    if demo:
        rgidf = utils.get_rgi_glacier_entities(cfg.DATA['demo_glaciers'].index)
    elif test_rgidf is None:
        # Get the RGI file
        rgidf = gpd.read_file(
            utils.get_rgi_region_file(rgi_reg, version=rgi_version))
        # We use intersects
        rgif = utils.get_rgi_intersects_region_file(rgi_reg,
                                                    version=rgi_version)
        cfg.set_intersects_db(rgif)
    else:
        rgidf = test_rgidf
        cfg.set_intersects_db(test_intersects_file)

    if is_test:
        # Just for fun
        rgidf = rgidf.sample(4)

    # Sort for more efficient parallel computing
    rgidf = rgidf.sort_values('Area', ascending=False)

    log.workflow('Starting prepro run for RGI reg: {} '
                 'and border: {}'.format(rgi_reg, border))
    log.workflow('Number of glaciers: {}'.format(len(rgidf)))

    # Input
    if test_topofile:
        cfg.PATHS['dem_file'] = test_topofile

    # L1 - initialize working directories
    gdirs = workflow.init_glacier_regions(rgidf, reset=True, force=True)

    # Glacier stats
    sum_dir = os.path.join(base_dir, 'L1', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # L1 OK - compress all in output directory
    l_base_dir = os.path.join(base_dir, 'L1')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=l_base_dir)
    utils.base_dir_to_tar(l_base_dir)

    # L2 - Tasks
    # Pre-download other files just in case
    if test_crudir is None:
        _ = utils.get_cru_file(var='tmp')
        _ = utils.get_cru_file(var='pre')
    else:
        cfg.PATHS['cru_dir'] = test_crudir

    workflow.execute_entity_task(tasks.process_cru_data, gdirs)

    # Glacier stats
    sum_dir = os.path.join(base_dir, 'L2', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # L2 OK - compress all in output directory
    l_base_dir = os.path.join(base_dir, 'L2')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=l_base_dir)
    utils.base_dir_to_tar(l_base_dir)

    # L3 - Tasks
    task_list = [
        tasks.glacier_masks,
        tasks.compute_centerlines,
        tasks.initialize_flowlines,
        tasks.compute_downstream_line,
        tasks.compute_downstream_bedshape,
        tasks.catchment_area,
        tasks.catchment_intersections,
        tasks.catchment_width_geom,
        tasks.catchment_width_correction,
        tasks.local_t_star,
        tasks.mu_star_calibration,
        tasks.prepare_for_inversion,
        tasks.mass_conservation_inversion,
        tasks.filter_inversion_output,
    ]
    for task in task_list:
        workflow.execute_entity_task(task, gdirs)

    # Glacier stats
    sum_dir = os.path.join(base_dir, 'L3', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)
    opath = os.path.join(sum_dir, 'climate_statistics_{}.csv'.format(rgi_reg))
    utils.compile_climate_statistics(gdirs,
                                     add_climate_period=climate_periods,
                                     path=opath)

    # L3 OK - compress all in output directory
    l_base_dir = os.path.join(base_dir, 'L3')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=l_base_dir)
    utils.base_dir_to_tar(l_base_dir)

    # L4 - Tasks
    workflow.execute_entity_task(tasks.init_present_time_glacier, gdirs)

    # Glacier stats
    sum_dir = os.path.join(base_dir, 'L4', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # Copy mini data to new dir
    base_dir = os.path.join(base_dir, 'L4')
    mini_gdirs = workflow.execute_entity_task(tasks.copy_to_basedir,
                                              gdirs,
                                              base_dir=base_dir)

    # L4 OK - compress all in output directory
    workflow.execute_entity_task(utils.gdir_to_tar, mini_gdirs, delete=True)
    utils.base_dir_to_tar(base_dir)

    # Log
    m, s = divmod(time.time() - start, 60)
    h, m = divmod(m, 60)
    log.workflow('OGGM prepro_levels is done! Time needed: '
                 '{:02d}:{:02d}:{:02d}'.format(int(h), int(m), int(s)))
Ejemplo n.º 14
0
def run_cmip():
    """



    """
    # Initialize OGGM and set up the default run parameters
    vascaling.initialize(logging_level='DEBUG')
    rgi_version = '62'
    cfg.PARAMS['border'] = 80

    # CLUSTER paths
    wdir = os.environ.get('WORKDIR', '')
    utils.mkdir(wdir)
    cfg.PATHS['working_dir'] = wdir
    outdir = os.environ.get('OUTDIR', '')
    utils.mkdir(outdir)

    # define the baseline climate CRU or HISTALP
    cfg.PARAMS['baseline_climate'] = 'CRU'
    # set the mb hyper parameters accordingly
    cfg.PARAMS['prcp_scaling_factor'] = 3
    cfg.PARAMS['temp_melt'] = 0
    cfg.PARAMS['temp_all_solid'] = 4
    cfg.PARAMS['prcp_default_gradient'] = 4e-4
    cfg.PARAMS['run_mb_calibration'] = False
    # set minimum ice thickness to include in glacier length computation
    # this reduces weird spikes in length records
    cfg.PARAMS['min_ice_thick_for_length'] = 0.1

    # the bias is defined to be zero during the calibration process,
    # which is why we don't use it here to reproduce the results
    cfg.PARAMS['use_bias_for_run'] = True

    # read RGI entry for the glaciers as DataFrame
    # containing the outline area as shapefile
    # RGI glaciers
    rgi_reg = os.environ.get('RGI_REG', '')
    if rgi_reg not in ['{:02d}'.format(r) for r in range(1, 20)]:
        raise RuntimeError('Need an RGI Region')
    rgi_ids = gpd.read_file(
        utils.get_rgi_region_file(rgi_reg, version=rgi_version))

    # For greenland we omit connectivity level 2
    if rgi_reg == '05':
        rgi_ids = rgi_ids.loc[rgi_ids['Connect'] != 2]

    # get and set path to intersect shapefile
    intersects_db = utils.get_rgi_intersects_region_file(region=rgi_reg)
    cfg.set_intersects_db(intersects_db)

    # operational run, all glaciers should run
    cfg.PARAMS['continue_on_error'] = True

    # Module logger
    log = logging.getLogger(__name__)
    log.workflow('Starting run for RGI reg {}'.format(rgi_reg))

    # Go - get the pre-processed glacier directories
    base_url = 'https://cluster.klima.uni-bremen.de/' \
               '~moberrauch/prepro_vas_paper/'
    gdirs = workflow.init_glacier_directories(rgi_ids, from_prepro_level=3,
                                              prepro_base_url=base_url,
                                              prepro_rgi_version=rgi_version)

    # read gcm list
    gcms = pd.read_csv('/home/www/oggm/cmip6/all_gcm_list.csv', index_col=0)

    # iterate over all specified GCMs
    for gcm in sys.argv[1:]:
        # iterate over all SSPs (Shared Socioeconomic Pathways)
        df1 = gcms.loc[gcms.gcm == gcm]
        for ssp in df1.ssp.unique():
            df2 = df1.loc[df1.ssp == ssp]
            assert len(df2) == 2
            # get temperature projections
            ft = df2.loc[df2['var'] == 'tas'].iloc[0]
            # get precipitation projections
            fp = df2.loc[df2['var'] == 'pr'].iloc[0].path
            rid = ft.fname.replace('_r1i1p1f1_tas.nc', '')
            ft = ft.path

            log.workflow('Starting run for {}'.format(rid))

            workflow.execute_entity_task(gcm_climate.process_cmip_data, gdirs,
                                         # recognize the climate file for later
                                         filesuffix='_' + rid,
                                         # temperature projections
                                         fpath_temp=ft,
                                         # precip projections
                                         fpath_precip=fp,
                                         year_range=('1981', '2020'))

            workflow.execute_entity_task(vascaling.run_from_climate_data,
                                         gdirs,
                                         # use gcm_data, not climate_historical
                                         climate_filename='gcm_data',
                                         # use a different scenario
                                         climate_input_filesuffix='_' + rid,
                                         # this is important! Start from 2019
                                         init_model_filesuffix='_historical',
                                         # recognize the run for later
                                         output_filesuffix=rid,
                                         return_value=False)
            gcm_dir = os.path.join(outdir, 'RGI' + rgi_reg, gcm)
            utils.mkdir(gcm_dir)
            utils.compile_run_output(gdirs, input_filesuffix=rid,
                                     path=os.path.join(gcm_dir, rid + '.nc'))

    log.workflow('OGGM Done')
Ejemplo n.º 15
0
def run_prepro_levels(rgi_version=None,
                      rgi_reg=None,
                      border=None,
                      output_folder='',
                      working_dir='',
                      dem_source='',
                      is_test=False,
                      test_ids=None,
                      demo=False,
                      test_rgidf=None,
                      test_intersects_file=None,
                      test_topofile=None,
                      disable_mp=False,
                      params_file=None,
                      elev_bands=False,
                      match_regional_geodetic_mb=False,
                      match_geodetic_mb_per_glacier=False,
                      evolution_model='fl_sia',
                      centerlines_only=False,
                      override_params=None,
                      add_consensus=False,
                      start_level=None,
                      start_base_url=None,
                      max_level=5,
                      ref_tstars_base_url='',
                      logging_level='WORKFLOW',
                      disable_dl_verify=False,
                      dynamic_spinup=False,
                      continue_on_error=True):
    """Generate the preprocessed OGGM glacier directories for this OGGM version

    Parameters
    ----------
    rgi_version : str
        the RGI version to use (defaults to cfg.PARAMS)
    rgi_reg : str
        the RGI region to process
    border : int
        the number of pixels at the maps border
    output_folder : str
        path to the output folder (where to put the preprocessed tar files)
    dem_source : str
        which DEM source to use: default, SOURCE_NAME or ALL
    working_dir : str
        path to the OGGM working directory
    ref_tstars_base_url : str
        url where to find the pre-calibrated reference tstar list.
        Required as of v1.4.
    params_file : str
        path to the OGGM parameter file (to override defaults)
    is_test : bool
        to test on a couple of glaciers only!
    test_ids : list
        if is_test: list of ids to process
    demo : bool
        to run the prepro for the list of demo glaciers
    test_rgidf : shapefile
        for testing purposes only
    test_intersects_file : shapefile
        for testing purposes only
    test_topofile : str
        for testing purposes only
    test_crudir : str
        for testing purposes only
    disable_mp : bool
        disable multiprocessing
    elev_bands : bool
        compute all flowlines based on the Huss&Hock 2015 method instead
        of the OGGM default, which is a mix of elev_bands and centerlines.
    centerlines_only : bool
        compute all flowlines based on the OGGM centerline(s) method instead
        of the OGGM default, which is a mix of elev_bands and centerlines.
    match_regional_geodetic_mb : str
        match the regional mass-balance estimates at the regional level
        ('hugonnet': Hugonnet et al., 2020 or 'zemp': Zemp et al., 2019).
    match_geodetic_mb_per_glacier : str
        match the mass-balance estimates at the glacier level
        (currently only 'hugonnet': Hugonnet et al., 2020).
    evolution_model : str
        which geometry evolution model to use: `fl_sia` (default),
        or `massredis` (mass redistribution curve).
    add_consensus : bool
        adds (reprojects) the consensus estimates thickness to the glacier
        directories. With elev_bands=True, the data will also be binned.
    start_level : int
        the pre-processed level to start from (default is to start from
        scratch). If set, you'll need to indicate start_base_url as well.
    start_base_url : str
        the pre-processed base-url to fetch the data from.
    max_level : int
        the maximum pre-processing level before stopping
    logging_level : str
        the logging level to use (DEBUG, INFO, WARNING, WORKFLOW)
    override_params : dict
        a dict of parameters to override.
    disable_dl_verify : bool
        disable the hash verification of OGGM downloads
    dynamic_spinup: str
        include a dynamic spinup matching 'area' OR 'volume' at the RGI-date
    """

    # Input check
    if max_level not in [1, 2, 3, 4, 5]:
        raise InvalidParamsError('max_level should be one of [1, 2, 3, 4, 5]')

    if start_level is not None:
        if start_level not in [0, 1, 2]:
            raise InvalidParamsError('start_level should be one of [0, 1, 2]')
        if start_level > 0 and start_base_url is None:
            raise InvalidParamsError('With start_level, please also indicate '
                                     'start_base_url')
    else:
        start_level = 0

    if match_regional_geodetic_mb and match_geodetic_mb_per_glacier:
        raise InvalidParamsError(
            'match_regional_geodetic_mb incompatible with '
            'match_geodetic_mb_per_glacier!')

    if match_geodetic_mb_per_glacier and match_geodetic_mb_per_glacier != 'hugonnet':
        raise InvalidParamsError('Currently only `hugonnet` is available for '
                                 'match_geodetic_mb_per_glacier.')

    if evolution_model not in ['fl_sia', 'massredis']:
        raise InvalidParamsError('evolution_model should be one of '
                                 "['fl_sia', 'massredis'].")

    if dynamic_spinup and dynamic_spinup not in ['area', 'volume']:
        raise InvalidParamsError(f"Dynamic spinup option '{dynamic_spinup}' "
                                 "not supported")

    if dynamic_spinup and evolution_model == 'massredis':
        raise InvalidParamsError("Dynamic spinup is not working/tested"
                                 "with massredis!")

    # Time
    start = time.time()

    def _time_log():
        # Log util
        m, s = divmod(time.time() - start, 60)
        h, m = divmod(m, 60)
        log.workflow('OGGM prepro_levels is done! Time needed: '
                     '{:02d}:{:02d}:{:02d}'.format(int(h), int(m), int(s)))

    # Local paths
    if override_params is None:
        override_params = {}

    utils.mkdir(working_dir)
    override_params['working_dir'] = working_dir

    # Initialize OGGM and set up the run parameters
    cfg.initialize(file=params_file,
                   params=override_params,
                   logging_level=logging_level,
                   future=True)

    if match_geodetic_mb_per_glacier and (cfg.PARAMS['hydro_month_nh'] != 1 or
                                          cfg.PARAMS['hydro_month_sh'] != 1):
        raise InvalidParamsError('We recommend to set hydro_month_nh and sh '
                                 'to 1 for the geodetic MB calibration per '
                                 'glacier.')

    # Use multiprocessing?
    cfg.PARAMS['use_multiprocessing'] = not disable_mp

    # How many grid points around the glacier?
    # Make it large if you expect your glaciers to grow large
    cfg.PARAMS['border'] = border

    # Set to True for operational runs
    cfg.PARAMS['continue_on_error'] = continue_on_error

    # Check for the integrity of the files OGGM downloads at run time
    # For large files (e.g. using a 1 tif DEM like ALASKA) calculating the hash
    # takes a long time, so deactivating this can make sense
    cfg.PARAMS['dl_verify'] = not disable_dl_verify

    # Other things that make sense
    cfg.PARAMS['store_model_geometry'] = True

    # Log the parameters
    msg = '# OGGM Run parameters:'
    for k, v in cfg.PARAMS.items():
        if type(v) in [pd.DataFrame, dict]:
            continue
        msg += '\n    {}: {}'.format(k, v)
    log.workflow(msg)

    if rgi_version is None:
        rgi_version = cfg.PARAMS['rgi_version']
    output_base_dir = os.path.join(output_folder, 'RGI{}'.format(rgi_version),
                                   'b_{:03d}'.format(border))

    # Add a package version file
    utils.mkdir(output_base_dir)
    opath = os.path.join(output_base_dir, 'package_versions.txt')
    with open(opath, 'w') as vfile:
        vfile.write(utils.show_versions(logger=log))

    if demo:
        rgidf = utils.get_rgi_glacier_entities(cfg.DATA['demo_glaciers'].index)
    elif test_rgidf is None:
        # Get the RGI file
        rgidf = gpd.read_file(
            utils.get_rgi_region_file(rgi_reg, version=rgi_version))
        # We use intersects
        rgif = utils.get_rgi_intersects_region_file(rgi_reg,
                                                    version=rgi_version)
        cfg.set_intersects_db(rgif)

        # Some RGI input quality checks - this is based on visual checks
        # of large glaciers in the RGI
        ids_to_ice_cap = [
            'RGI60-05.10315',  # huge Greenland ice cap
            'RGI60-03.01466',  # strange thing next to Devon
            'RGI60-09.00918',  # Academy of sciences Ice cap
            'RGI60-09.00969',
            'RGI60-09.00958',
            'RGI60-09.00957',
        ]
        rgidf.loc[rgidf.RGIId.isin(ids_to_ice_cap), 'Form'] = '1'

        # In AA almost all large ice bodies are actually ice caps
        if rgi_reg == '19':
            rgidf.loc[rgidf.Area > 100, 'Form'] = '1'

        # For greenland we omit connectivity level 2
        if rgi_reg == '05':
            rgidf = rgidf.loc[rgidf['Connect'] != 2]
    else:
        rgidf = test_rgidf
        cfg.set_intersects_db(test_intersects_file)

    if is_test:
        if test_ids is not None:
            rgidf = rgidf.loc[rgidf.RGIId.isin(test_ids)]
        else:
            rgidf = rgidf.sample(4)

        if max_level > 2:
            # Also use ref tstars
            utils.apply_test_ref_tstars()

    if max_level > 2 and ref_tstars_base_url:
        workflow.download_ref_tstars(base_url=ref_tstars_base_url)

    log.workflow('Starting prepro run for RGI reg: {} '
                 'and border: {}'.format(rgi_reg, border))
    log.workflow('Number of glaciers: {}'.format(len(rgidf)))

    # L0 - go
    if start_level == 0:
        gdirs = workflow.init_glacier_directories(rgidf,
                                                  reset=True,
                                                  force=True)

        # Glacier stats
        sum_dir = os.path.join(output_base_dir, 'L0', 'summary')
        utils.mkdir(sum_dir)
        opath = os.path.join(sum_dir,
                             'glacier_statistics_{}.csv'.format(rgi_reg))
        utils.compile_glacier_statistics(gdirs, path=opath)

        # L0 OK - compress all in output directory
        log.workflow('L0 done. Writing to tar...')
        level_base_dir = os.path.join(output_base_dir, 'L0')
        workflow.execute_entity_task(utils.gdir_to_tar,
                                     gdirs,
                                     delete=False,
                                     base_dir=level_base_dir)
        utils.base_dir_to_tar(level_base_dir)
        if max_level == 0:
            _time_log()
            return
    else:
        gdirs = workflow.init_glacier_directories(
            rgidf,
            reset=True,
            force=True,
            from_prepro_level=start_level,
            prepro_border=border,
            prepro_rgi_version=rgi_version,
            prepro_base_url=start_base_url)

    # L1 - Add dem files
    if start_level == 0:
        if test_topofile:
            cfg.PATHS['dem_file'] = test_topofile

        # Which DEM source?
        if dem_source.upper() == 'ALL':
            # This is the complex one, just do the job and leave
            log.workflow('Running prepro on ALL sources')
            for i, s in enumerate(utils.DEM_SOURCES):
                rs = i == 0
                log.workflow('Running prepro on sources: {}'.format(s))
                gdirs = workflow.init_glacier_directories(rgidf,
                                                          reset=rs,
                                                          force=rs)
                workflow.execute_entity_task(tasks.define_glacier_region,
                                             gdirs,
                                             source=s)
                workflow.execute_entity_task(_rename_dem_folder,
                                             gdirs,
                                             source=s)

            # make a GeoTiff mask of the glacier, choose any source
            workflow.execute_entity_task(gis.rasterio_glacier_mask,
                                         gdirs,
                                         source='ALL')

            # Compress all in output directory
            level_base_dir = os.path.join(output_base_dir, 'L1')
            workflow.execute_entity_task(utils.gdir_to_tar,
                                         gdirs,
                                         delete=False,
                                         base_dir=level_base_dir)
            utils.base_dir_to_tar(level_base_dir)

            _time_log()
            return

        # Force a given source
        source = dem_source.upper() if dem_source else None

        # L1 - go
        workflow.execute_entity_task(tasks.define_glacier_region,
                                     gdirs,
                                     source=source)

        # Glacier stats
        sum_dir = os.path.join(output_base_dir, 'L1', 'summary')
        utils.mkdir(sum_dir)
        opath = os.path.join(sum_dir,
                             'glacier_statistics_{}.csv'.format(rgi_reg))
        utils.compile_glacier_statistics(gdirs, path=opath)

        # L1 OK - compress all in output directory
        log.workflow('L1 done. Writing to tar...')
        level_base_dir = os.path.join(output_base_dir, 'L1')
        workflow.execute_entity_task(utils.gdir_to_tar,
                                     gdirs,
                                     delete=False,
                                     base_dir=level_base_dir)
        utils.base_dir_to_tar(level_base_dir)
        if max_level == 1:
            _time_log()
            return

    # L2 - Tasks
    if start_level <= 1:
        # Check which glaciers will be processed as what
        if elev_bands:
            gdirs_band = gdirs
            gdirs_cent = []
        elif centerlines_only:
            gdirs_band = []
            gdirs_cent = gdirs
        else:
            # Default is to centerlines_only, but it used to be a mix
            # (e.g. bands for ice caps, etc)
            # I still keep this logic here in case we want to mix again
            gdirs_band = []
            gdirs_cent = gdirs

        log.workflow('Start flowline processing with: '
                     'N centerline type: {}, '
                     'N elev bands type: {}.'
                     ''.format(len(gdirs_cent), len(gdirs_band)))

        # HH2015 method
        workflow.execute_entity_task(tasks.simple_glacier_masks, gdirs_band)

        # Centerlines OGGM
        workflow.execute_entity_task(tasks.glacier_masks, gdirs_cent)

        if add_consensus:
            from oggm.shop.bedtopo import add_consensus_thickness
            workflow.execute_entity_task(add_consensus_thickness, gdirs_band)
            workflow.execute_entity_task(add_consensus_thickness, gdirs_cent)

            # Elev bands with var data
            vn = 'consensus_ice_thickness'
            workflow.execute_entity_task(tasks.elevation_band_flowline,
                                         gdirs_band,
                                         bin_variables=vn)
            workflow.execute_entity_task(
                tasks.fixed_dx_elevation_band_flowline,
                gdirs_band,
                bin_variables=vn)
        else:
            # HH2015 method without it
            task_list = [
                tasks.elevation_band_flowline,
                tasks.fixed_dx_elevation_band_flowline,
            ]
            for task in task_list:
                workflow.execute_entity_task(task, gdirs_band)

        # Centerlines OGGM
        task_list = [
            tasks.compute_centerlines,
            tasks.initialize_flowlines,
            tasks.catchment_area,
            tasks.catchment_intersections,
            tasks.catchment_width_geom,
            tasks.catchment_width_correction,
        ]
        for task in task_list:
            workflow.execute_entity_task(task, gdirs_cent)

        # Same for all glaciers
        if border >= 20:
            task_list = [
                tasks.compute_downstream_line,
                tasks.compute_downstream_bedshape,
            ]
            for task in task_list:
                workflow.execute_entity_task(task, gdirs)
        else:
            log.workflow('L2: for map border values < 20, wont compute '
                         'downstream lines.')

        # Glacier stats
        sum_dir = os.path.join(output_base_dir, 'L2', 'summary')
        utils.mkdir(sum_dir)
        opath = os.path.join(sum_dir,
                             'glacier_statistics_{}.csv'.format(rgi_reg))
        utils.compile_glacier_statistics(gdirs, path=opath)

        # And for level 2: shapes
        if len(gdirs_cent) > 0:
            opath = os.path.join(sum_dir, 'centerlines_{}.shp'.format(rgi_reg))
            utils.write_centerlines_to_shape(gdirs_cent,
                                             to_tar=True,
                                             path=opath)

        # L2 OK - compress all in output directory
        log.workflow('L2 done. Writing to tar...')
        level_base_dir = os.path.join(output_base_dir, 'L2')
        workflow.execute_entity_task(utils.gdir_to_tar,
                                     gdirs,
                                     delete=False,
                                     base_dir=level_base_dir)
        utils.base_dir_to_tar(level_base_dir)
        if max_level == 2:
            _time_log()
            return

    # L3 - Tasks
    sum_dir = os.path.join(output_base_dir, 'L3', 'summary')
    utils.mkdir(sum_dir)

    # Climate
    workflow.execute_entity_task(tasks.process_climate_data, gdirs)

    if cfg.PARAMS['climate_qc_months'] > 0:
        workflow.execute_entity_task(tasks.historical_climate_qc, gdirs)

    if match_geodetic_mb_per_glacier:
        utils.get_geodetic_mb_dataframe()  # Small optim to avoid concurrency
        workflow.execute_entity_task(
            tasks.mu_star_calibration_from_geodetic_mb, gdirs)
        workflow.execute_entity_task(tasks.apparent_mb_from_any_mb, gdirs)
    else:
        workflow.execute_entity_task(tasks.local_t_star, gdirs)
        workflow.execute_entity_task(tasks.mu_star_calibration, gdirs)

    # Inversion: we match the consensus
    filter = border >= 20
    workflow.calibrate_inversion_from_consensus(gdirs,
                                                apply_fs_on_mismatch=True,
                                                error_on_mismatch=False,
                                                filter_inversion_output=filter)

    # Do we want to match geodetic estimates?
    # This affects only the bias so we can actually do this *after*
    # the inversion, but we really want to take calving into account here
    if match_regional_geodetic_mb:
        opath = os.path.join(
            sum_dir, 'fixed_geometry_mass_balance_'
            'before_match_{}.csv'.format(rgi_reg))
        utils.compile_fixed_geometry_mass_balance(gdirs, path=opath)
        workflow.match_regional_geodetic_mb(gdirs,
                                            rgi_reg=rgi_reg,
                                            dataset=match_regional_geodetic_mb)

    # We get ready for modelling
    if border >= 20:
        workflow.execute_entity_task(tasks.init_present_time_glacier, gdirs)
    else:
        log.workflow(
            'L3: for map border values < 20, wont initialize glaciers '
            'for the run.')
    # Glacier stats
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)
    opath = os.path.join(sum_dir, 'climate_statistics_{}.csv'.format(rgi_reg))
    utils.compile_climate_statistics(gdirs, path=opath)
    opath = os.path.join(sum_dir,
                         'fixed_geometry_mass_balance_{}.csv'.format(rgi_reg))
    utils.compile_fixed_geometry_mass_balance(gdirs, path=opath)

    # L3 OK - compress all in output directory
    log.workflow('L3 done. Writing to tar...')
    level_base_dir = os.path.join(output_base_dir, 'L3')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=level_base_dir)
    utils.base_dir_to_tar(level_base_dir)
    if max_level == 3:
        _time_log()
        return
    if border < 20:
        log.workflow('L3: for map border values < 20, wont compute L4 and L5.')
        _time_log()
        return

    # L4 - No tasks: add some stats for consistency and make the dirs small
    sum_dir_L3 = sum_dir
    sum_dir = os.path.join(output_base_dir, 'L4', 'summary')
    utils.mkdir(sum_dir)

    # Copy L3 files for consistency
    for bn in [
            'glacier_statistics', 'climate_statistics',
            'fixed_geometry_mass_balance'
    ]:
        ipath = os.path.join(sum_dir_L3, bn + '_{}.csv'.format(rgi_reg))
        opath = os.path.join(sum_dir, bn + '_{}.csv'.format(rgi_reg))
        shutil.copyfile(ipath, opath)

    # Copy mini data to new dir
    mini_base_dir = os.path.join(working_dir, 'mini_perglacier',
                                 'RGI{}'.format(rgi_version),
                                 'b_{:03d}'.format(border))
    mini_gdirs = workflow.execute_entity_task(tasks.copy_to_basedir,
                                              gdirs,
                                              base_dir=mini_base_dir)

    # L4 OK - compress all in output directory
    log.workflow('L4 done. Writing to tar...')
    level_base_dir = os.path.join(output_base_dir, 'L4')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 mini_gdirs,
                                 delete=False,
                                 base_dir=level_base_dir)
    utils.base_dir_to_tar(level_base_dir)
    if max_level == 4:
        _time_log()
        return

    # L5 - spinup run in mini gdirs
    gdirs = mini_gdirs

    # Get end date. The first gdir might have blown up, try some others
    i = 0
    while True:
        if i >= len(gdirs):
            raise RuntimeError('Found no valid glaciers!')
        try:
            y0 = gdirs[i].get_climate_info()['baseline_hydro_yr_0']
            # One adds 1 because the run ends at the end of the year
            ye = gdirs[i].get_climate_info()['baseline_hydro_yr_1'] + 1
            break
        except BaseException:
            i += 1

    # Which model?
    if evolution_model == 'massredis':
        from oggm.core.flowline import MassRedistributionCurveModel
        evolution_model = MassRedistributionCurveModel
    else:
        from oggm.core.flowline import FluxBasedModel
        evolution_model = FluxBasedModel

    # OK - run
    if dynamic_spinup:
        workflow.execute_entity_task(
            tasks.run_dynamic_spinup,
            gdirs,
            evolution_model=evolution_model,
            minimise_for=dynamic_spinup,
            precision_percent=1,
            output_filesuffix='_dynamic_spinup',
        )
        workflow.execute_entity_task(tasks.run_from_climate_data,
                                     gdirs,
                                     min_ys=y0,
                                     ye=ye,
                                     evolution_model=evolution_model,
                                     init_model_filesuffix='_dynamic_spinup',
                                     output_filesuffix='_hist_spin')
        workflow.execute_entity_task(tasks.merge_consecutive_run_outputs,
                                     gdirs,
                                     input_filesuffix_1='_dynamic_spinup',
                                     input_filesuffix_2='_hist_spin',
                                     output_filesuffix='_historical_spinup',
                                     delete_input=True)

    workflow.execute_entity_task(tasks.run_from_climate_data,
                                 gdirs,
                                 min_ys=y0,
                                 ye=ye,
                                 evolution_model=evolution_model,
                                 output_filesuffix='_historical')

    # Now compile the output
    sum_dir = os.path.join(output_base_dir, 'L5', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, f'historical_run_output_{rgi_reg}.nc')
    utils.compile_run_output(gdirs, path=opath, input_filesuffix='_historical')

    if dynamic_spinup:
        opath = os.path.join(sum_dir,
                             f'historical_spinup_run_output_{rgi_reg}.nc')
        utils.compile_run_output(gdirs,
                                 path=opath,
                                 input_filesuffix='_historical_spinup')

    # Glacier statistics we recompute here for error analysis
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # Other stats for consistency
    for bn in ['climate_statistics', 'fixed_geometry_mass_balance']:
        ipath = os.path.join(sum_dir_L3, bn + '_{}.csv'.format(rgi_reg))
        opath = os.path.join(sum_dir, bn + '_{}.csv'.format(rgi_reg))
        shutil.copyfile(ipath, opath)

    # Add the extended files
    pf = os.path.join(sum_dir, 'historical_run_output_{}.nc'.format(rgi_reg))
    mf = os.path.join(sum_dir,
                      'fixed_geometry_mass_balance_{}.csv'.format(rgi_reg))
    # This is crucial - extending calving only possible with L3 data!!!
    sf = os.path.join(sum_dir_L3, 'glacier_statistics_{}.csv'.format(rgi_reg))
    opath = os.path.join(
        sum_dir, 'historical_run_output_extended_{}.nc'.format(rgi_reg))
    utils.extend_past_climate_run(past_run_file=pf,
                                  fixed_geometry_mb_file=mf,
                                  glacier_statistics_file=sf,
                                  path=opath)

    # L5 OK - compress all in output directory
    log.workflow('L5 done. Writing to tar...')
    level_base_dir = os.path.join(output_base_dir, 'L5')
    workflow.execute_entity_task(utils.gdir_to_tar,
                                 gdirs,
                                 delete=False,
                                 base_dir=level_base_dir)
    utils.base_dir_to_tar(level_base_dir)

    _time_log()
Ejemplo n.º 16
0
# Set to True for operational runs
cfg.PARAMS['continue_on_error'] = False

# test directory
idir = g2ti.geometry_dir
cfg.PATHS['working_dir'] = '/home/mowglie/disk/G2TI/vas_plot'
utils.mkdir(cfg.PATHS['working_dir'], reset=True)

df = pd.read_csv(g2ti.index_file)
df = df.loc[df.n_pts > 49]  # 582 glaciers

rgi_ids = df.RGIId.values
flist = [idir + r[:8] + '/' + r for r in rgi_ids]

cfg.set_intersects_db(
    utils.get_rgi_intersects_region_file(version=version, rgi_ids=rgi_ids))
gdirs = g2tasks.parallel_define(flist)

# Preprocessing tasks
task_list = [
    g2tasks.g2ti_masks,
]
for task in task_list:
    execute_entity_task(task, gdirs)

from g2ti import plots
from functools import partial
func = partial(plots.plot_domain_with_gtd, autosave=True)
execute_entity_task(func, gdirs)

# Log
Ejemplo n.º 17
0
def equilibrium_run_vas(rgi_ids,
                        use_random_mb=True,
                        path=True,
                        temp_biases=(0, +0.5, -0.5),
                        use_bias_for_run=False,
                        suffixes=('_bias_zero', '_bias_p', '_bias_n'),
                        tstar=None,
                        vas_c_length_m=None,
                        vas_c_area_m2=None,
                        **kwargs):
    """ The routine runs all steps for the equilibrium experiments using the
    volume/area scaling model:
    - OGGM preprocessing, including initialization, GIS tasks, climate tasks and
      massbalance tasks.
    - Run model for all glaciers with constant (or random) massbalance model
      over 3000 years (default value).
    - Process the model output dataset(s), i.e. normalization, average/sum, ...

    The final dataset containing all results is returned. Given a path is is
    also stored to file.

    Parameters
    ----------
    rgi_ids: array-like
        List of RGI IDs for which the equilibrium experiments are performed.
    use_random_mb: bool, optional, default=True
        Choose between random massbalance model and constant massbalance model.
    path: bool or str, optional, default=True
        If a path is given (or True), the resulting dataset is stored to file.
    temp_biases: array-like, optional, default=(0, +0.5, -0.5)
        List of temperature biases (float, in degC) for the mass balance model.
    suffixes: array-like, optional, default=['_normal', '_bias_p', '_bias_n']
        Descriptive suffixes corresponding to the given temperature biases.
    tstar: float, optional, default=None
        'Equilibrium year' used for the mass balance calibration.
    vas_c_length_m: float, optional, default=None
        Scaling constant for volume/length scaling
    vas_c_area_m2: float, optional, default=None
        Scaling constant for volume/area scaling
    kwargs:
        Additional key word arguments for the `run_random_climate` or
        `run_constant_climate` routines of the vascaling module.

    Returns
    -------
    Dataset containing yearly values of all glacier geometries.

    """
    # assert correct output file suffixes for temp biases
    if len(temp_biases) != len(suffixes):
        raise RuntimeError("Each given temperature bias must have its "
                           "corresponding suffix")

    # OGGM preprocessing
    # ------------------

    # compute RGI region and version from RGI IDs
    # assuming all they are all the same
    rgi_region = (rgi_ids[0].split('-')[-1]).split('.')[0]
    rgi_version = (rgi_ids[0].split('-')[0])[-2:]

    # load default parameter file
    cfg.initialize()

    # create working directory
    wdir = '/Users/oberrauch/work/master/working_directories/'
    wdir += 'test_cluster'
    if not os.path.exists(wdir):
        os.makedirs(wdir)
    # shutil.rmtree(wdir)
    # os.makedirs(wdir)
    # set path to working directory
    cfg.PATHS['working_dir'] = wdir
    # set RGI verion and region
    cfg.PARAMS['rgi_version'] = rgi_version
    # define how many grid points to use around the glacier,
    # if you expect the glacier to grow large use a larger border
    cfg.PARAMS['border'] = 120
    # we use HistAlp climate data
    cfg.PARAMS['baseline_climate'] = 'HISTALP'
    # set the mb hyper parameters accordingly
    cfg.PARAMS['prcp_scaling_factor'] = 1.75
    cfg.PARAMS['temp_melt'] = -1.75
    # change scaling constants for lenght and area
    if vas_c_length_m:
        cfg.PARAMS['vas_c_length_m'] = vas_c_length_m
    if vas_c_area_m2:
        cfg.PARAMS['vas_c_area_m2'] = vas_c_area_m2
    # the bias is defined to be zero during the calibration process,
    # which is why we don't use it here to reproduce the results
    cfg.PARAMS['use_bias_for_run'] = use_bias_for_run

    # read RGI entry for the glaciers as DataFrame
    # containing the outline area as shapefile
    rgidf = utils.get_rgi_glacier_entities(rgi_ids)

    # get and set path to intersect shapefile
    intersects_db = utils.get_rgi_intersects_region_file(region=rgi_region)
    cfg.set_intersects_db(intersects_db)

    # sort by area for more efficient parallel computing
    rgidf = rgidf.sort_values('Area', ascending=False)
    cfg.PARAMS['use_multiprocessing'] = True
    # operational run, all glaciers should run
    cfg.PARAMS['continue_on_error'] = True

    # initialize the GlacierDirectory
    gdirs = workflow.init_glacier_directories(rgidf, reset=False, force=True)

    # define the local grid and glacier mask
    workflow.execute_entity_task(gis.define_glacier_region, gdirs)
    workflow.execute_entity_task(gis.glacier_masks, gdirs)
    # process the given climate file
    workflow.execute_entity_task(climate.process_climate_data, gdirs)
    # compute local t* and the corresponding mu*
    workflow.execute_entity_task(vascaling.local_t_star,
                                 gdirs,
                                 tstar=tstar,
                                 bias=0)

    # Run model with constant/random mass balance model
    # -------------------------------------------------

    # use t* as center year, even if specified differently
    kwargs['y0'] = tstar
    # run for 3000 years if not specified otherwise
    kwargs.setdefault('nyears', 3000)

    if use_random_mb:
        # set random seed to get reproducible results
        kwargs.setdefault('seed', 12)

        # run RandomMassBalance model centered around t*, once without
        # temperature bias and once with positive and negative temperature bias
        # of 0.5 °C each (per default).
        for suffix, temp_bias in zip(suffixes, temp_biases):
            workflow.execute_entity_task(vascaling.run_random_climate,
                                         gdirs,
                                         temperature_bias=temp_bias,
                                         output_filesuffix=suffix,
                                         **kwargs)
    else:
        # run ConstantMassBalance model centered around t*, once without
        # temperature bias and once with positive and negative temperature bias
        # of 0.5 °C each (per default).
        for suffix, temp_bias in zip(suffixes, temp_biases):
            workflow.execute_entity_task(vascaling.run_constant_climate,
                                         gdirs,
                                         temperature_bias=temp_bias,
                                         output_filesuffix=suffix,
                                         **kwargs)

    # Process output dataset(s)
    # -------------------------

    # create empty container
    ds = list()
    # iterate over all temperature biases/suffixes
    for suffix in suffixes:
        # compile the output for each run
        ds_ = utils.compile_run_output(np.atleast_1d(gdirs),
                                       input_filesuffix=suffix,
                                       path=False)
        # add to container
        ds.append(ds_)

    # concat the single output datasets into one,
    # with temperature bias as coordinate
    ds = xr.concat(ds, pd.Index(temp_biases, name='temp_bias'))
    # add model type as coordinate
    ds.coords['model'] = 'vas'
    # add mb model type as coordinate
    ds.coords['mb_model'] = 'random' if use_random_mb else 'constant'

    # compute mean and sum over all glaciers
    ds_mean = ds.mean(dim='rgi_id')
    ds_mean.coords['rgi_id'] = 'mean'
    ds_sum = ds.sum(dim='rgi_id')
    ds_sum.coords['rgi_id'] = 'sum'
    # add to dataset
    ds = xr.concat([ds, ds_mean, ds_sum], dim='rgi_id')

    # normalize glacier geometries (length/area/volume) with start value
    ds_normal = normalize_ds_with_start(ds)
    # add coordinate to distinguish between normalized and absolute values
    ds.coords['normalized'] = int(False)
    ds_normal.coords['normalized'] = int(True)

    # combine datasets
    ds = xr.concat([ds, ds_normal], 'normalized')

    # store datasets
    if path:
        if path is True:
            mb = 'random' if use_random_mb else 'constant'
            path = os.path.join(cfg.PATHS['working_dir'],
                                'run_output_{}_vas.nc'.format(mb))

        ds.to_netcdf(path)

    return ds
Ejemplo n.º 18
0
def sensitivity_run_vas_old(rgi_ids, use_random_mb=False, use_mean=True,
                            path=True, temp_bias=0, tstar=None,
                            sensitivity_params=[[(4.5507, 0.191), 1]], suffixes=[''],
                            **kwargs):
    """ The routine runs all steps for the equilibrium experiments using the
    volume/area scaling model (cf. `equilibrium_run_vas`) but for only one
    given temperature bias. However, it is possible to supply a list of
    sensitivity parameters (the scaling constants, and time scale factor) to
    alter the model behavior.
    - OGGM preprocessing, including initialization, GIS tasks, climate tasks and
      massbalance tasks.
    - Run model for all glaciers with constant (or random) massbalance model
      over 3000 years (default value).
    - Process the model output dataset(s), i.e. normalization, average/sum, ...

    The final dataset containing all results is returned. Given a path is is
    also stored to file.

    Parameters
    ----------
    rgi_ids: array-like
        List of RGI IDs for which the equilibrium experiments are performed.
    use_random_mb: bool, optional, default=True
        Choose between random massbalance model and constant massbalance model.
    use_mean: bool, optional, default=True
        Choose between the mean or summation over all glaciers
    path: bool or str, optional, default=True
        If a path is given (or True), the resulting dataset is stored to file.
    temp_bias: float, optional, default=0
        Temperature bias (degC) for the mass balance model.
    sensitivity_params: multi-dimensional array-like, optional,
        default=[[(4.5507, 0.191), 1]]
        list containing the parameters which are to be varied in the following
        order: float tuple with length and area scaling constant, float as time
        scale factor
    suffixes: array-like, optional, default=['']
        Descriptive suffixes corresponding to the given sensitivity params
    tstar: float, optional, default=None
        'Equilibrium year' used for the mass balance calibration.
    kwargs:
        Additional key word arguments for the `run_random_climate` or
        `run_constant_climate` routines of the vascaling module.

    Returns
    -------
    Dataset containing yearly values of all glacier geometries.

    """
    # assert correct output file suffixes for temp biases
    if len(sensitivity_params) != len(suffixes):
        raise RuntimeError("Each given parameter set must have its "
                           "corresponding suffix")

    # OGGM preprocessing
    # ------------------

    # compute RGI region and version from RGI IDs
    # assuming all they are all the same
    rgi_region = (rgi_ids[0].split('-')[-1]).split('.')[0]
    rgi_version = (rgi_ids[0].split('-')[0])[-2:]

    # load default parameter file
    cfg.initialize()

    # create working directory
    wdir = '/Users/oberrauch/work/master/working_directories/'
    wdir += 'sensitivity_vas_wdir'
    if not os.path.exists(wdir):
        os.makedirs(wdir)
    # set path to working directory
    cfg.PATHS['working_dir'] = wdir
    # set RGI verion and region
    cfg.PARAMS['rgi_version'] = rgi_version
    # define how many grid points to use around the glacier,
    # if you expect the glacier to grow large use a larger border
    cfg.PARAMS['border'] = 80
    # we use HistAlp climate data
    cfg.PARAMS['baseline_climate'] = 'HISTALP'
    # set the mb hyper parameters accordingly
    cfg.PARAMS['prcp_scaling_factor'] = 1.75
    cfg.PARAMS['temp_melt'] = -1.75
    # the bias is defined to be zero during the calibration process,
    # which is why we don't use it here to reproduce the results
    cfg.PARAMS['use_bias_for_run'] = False

    # read RGI entry for the glaciers as DataFrame
    # containing the outline area as shapefile
    rgidf = utils.get_rgi_glacier_entities(rgi_ids)

    # get and set path to intersect shapefile
    intersects_db = utils.get_rgi_intersects_region_file(region=rgi_region)
    cfg.set_intersects_db(intersects_db)

    # initialize the GlacierDirectory
    gdirs = workflow.init_glacier_regions(rgidf)

    # define the local grid and glacier mask
    workflow.execute_entity_task(gis.glacier_masks, gdirs)
    # process the given climate file
    workflow.execute_entity_task(climate.process_histalp_data, gdirs)
    # compute local t* and the corresponding mu*
    workflow.execute_entity_task(vascaling.local_t_star, gdirs,
                                 tstar=tstar, bias=0)

    # Run model with constant/random mass balance model
    # -------------------------------------------------

    # use t* as center year, even if specified differently
    kwargs['y0'] = tstar
    # run for 3000 years if not specified otherwise
    kwargs.setdefault('nyears', 3000)

    if use_random_mb:
        # set random seed to get reproducible results
        kwargs.setdefault('seed', 12)

        # run RandomMassBalance model centered around t* for each given
        # parameter set
        for suffix, params in zip(suffixes, sensitivity_params):
            cfg.PARAMS['vas_c_length_m'] = params[0]
            cfg.PARAMS['vas_c_area_m2'] = params[1]
            kwargs['time_scale_factor'] = params[2]
            workflow.execute_entity_task(vascaling.run_random_climate, gdirs,
                                         temperature_bias=temp_bias,
                                         output_filesuffix=suffix, **kwargs)
    else:
        # run ConstantMassBalance model centered around t* for each given
        # parameter set
        for suffix, params in zip(suffixes, sensitivity_params):
            cfg.PARAMS['vas_c_length_m'] = params[0][0]
            cfg.PARAMS['vas_c_area_m2'] = params[0][1]
            kwargs['time_scale_factor'] = params[1]
            workflow.execute_entity_task(vascaling.run_constant_climate, gdirs,
                                         temperature_bias=temp_bias,
                                         output_filesuffix=suffix, **kwargs)
    # Process output dataset(s)
    # -------------------------

    # create empty container
    ds = list()
    # iterate over all temperature biases/suffixes
    for suffix, params in zip(suffixes, sensitivity_params):
        # compile the output for each run
        ds_ = utils.compile_run_output(np.atleast_1d(gdirs),
                                       filesuffix=suffix, path=False)
        # add sensitivity parameters as coordinates
        ds_.coords['length_scaling_const'] = params[0][0]
        ds_.coords['area_scaling_const'] = params[0][1]
        ds_.coords['time_scale_factor'] = params[1]
        # add to container
        ds.append(ds_)

    # concat the single output datasets into one, using 'sensitivity_params'
    # as name fot the new concatenate dimension
    ds = xr.combine_nested(ds, )
    # add model type as coordinate
    ds.coords['model'] = 'vas'
    # add mb model type as coordinate
    ds.coords['mb_model'] = 'random' if use_random_mb else 'constant'

    # normalize glacier geometries (length/area/volume) with start value
    if use_mean:
        # compute average over all glaciers
        ds_normal = normalize_ds_with_start(ds).mean(dim='rgi_id')
        ds = ds.mean(dim='rgi_id')
    else:
        # compute sum over all glaciers
        ds_normal = normalize_ds_with_start(ds.sum(dim='rgi_id'))
        ds = ds.sum(dim='rgi_id')

    # add coordinate to distinguish between normalized and absolute values
    ds.coords['normalized'] = False
    ds_normal.coords['normalized'] = True

    # combine datasets
    ds = xr.concat([ds, ds_normal], 'normalized')

    # store datasets
    if path:
        if path is True:
            path = list()
            mb = 'random' if use_random_mb else 'constant'
            path.append(os.path.join(cfg.PATHS['working_dir'],
                                     'run_output_{}_vas.nc'.format(mb)))
            # path.append(os.path.join(cfg.PATHS['working_dir'],
            #                          'run_output_{}_vas.nc'.format(mb)))
            # path.append(os.path.join(cfg.PATHS['working_dir'],
            #                          'normalized_output_{}_vas.nc'.format(mb)))
        ds.to_netcdf(path)
        # ds_normal.to_netcdf(path[1])

    # return ds, ds_normal
    return ds
Ejemplo n.º 19
0
def run_benchmark(rgi_version=None,
                  rgi_reg=None,
                  border=None,
                  output_folder='',
                  working_dir='',
                  is_test=False,
                  test_rgidf=None,
                  test_intersects_file=None,
                  test_topofile=None):
    """Does the actual job.

    Parameters
    ----------
    rgi_version : str
        the RGI version to use (defaults to cfg.PARAMS)
    rgi_reg : str
        the RGI region to process
    border : int
        the number of pixels at the maps border
    output_folder : str
        path to the output folder (where to put the preprocessed tar files)
    working_dir : str
        path to the OGGM working directory
    is_test : bool
        to test on a couple of glaciers only!
    test_rgidf : shapefile
        for testing purposes only
    test_intersects_file : shapefile
        for testing purposes only
    test_topofile : str
        for testing purposes only
    """

    # TODO: temporarily silence Fiona deprecation warnings
    import warnings
    warnings.filterwarnings("ignore", category=DeprecationWarning)

    # Module logger
    log = logging.getLogger(__name__)

    # Initialize OGGM and set up the run parameters
    cfg.initialize(logging_level='WORKFLOW')

    # Local paths
    utils.mkdir(working_dir)
    cfg.PATHS['working_dir'] = working_dir

    # Use multiprocessing?
    cfg.PARAMS['use_multiprocessing'] = True

    # How many grid points around the glacier?
    # Make it large if you expect your glaciers to grow large
    cfg.PARAMS['border'] = border

    # Set to True for operational runs
    cfg.PARAMS['continue_on_error'] = True

    # For statistics
    odf = pd.DataFrame()

    if rgi_version is None:
        rgi_version = cfg.PARAMS['rgi_version']
    base_dir = os.path.join(output_folder)

    # Add a package version file
    utils.mkdir(base_dir)
    opath = os.path.join(base_dir, 'package_versions.txt')
    with open(opath, 'w') as vfile:
        vfile.write(utils.show_versions(logger=log))

    # Read RGI
    start = time.time()
    if test_rgidf is None:
        # Get the RGI file
        rgidf = gpd.read_file(
            utils.get_rgi_region_file(rgi_reg, version=rgi_version))
        # We use intersects
        rgif = utils.get_rgi_intersects_region_file(rgi_reg,
                                                    version=rgi_version)
        cfg.set_intersects_db(rgif)
    else:
        rgidf = test_rgidf
        cfg.set_intersects_db(test_intersects_file)

    if is_test:
        # Just for fun
        rgidf = rgidf.sample(2)
    _add_time_to_df(odf, 'Read RGI', time.time() - start)

    # Sort for more efficient parallel computing
    rgidf = rgidf.sort_values('Area', ascending=False)

    log.workflow('Starting prepro run for RGI reg: {} '
                 'and border: {}'.format(rgi_reg, border))
    log.workflow('Number of glaciers: {}'.format(len(rgidf)))

    # Input
    if test_topofile:
        cfg.PATHS['dem_file'] = test_topofile

    # Initialize working directories
    start = time.time()
    gdirs = workflow.init_glacier_directories(rgidf, reset=True, force=True)
    _add_time_to_df(odf, 'init_glacier_directories', time.time() - start)

    # Tasks
    task_list = [
        tasks.define_glacier_region,
        tasks.process_cru_data,
        tasks.glacier_masks,
        tasks.compute_centerlines,
        tasks.initialize_flowlines,
        tasks.compute_downstream_line,
        tasks.compute_downstream_bedshape,
        tasks.catchment_area,
        tasks.catchment_intersections,
        tasks.catchment_width_geom,
        tasks.catchment_width_correction,
        tasks.local_t_star,
        tasks.mu_star_calibration,
        tasks.prepare_for_inversion,
        tasks.mass_conservation_inversion,
        tasks.filter_inversion_output,
        tasks.init_present_time_glacier,
    ]
    for task in task_list:
        start = time.time()
        workflow.execute_entity_task(task, gdirs)
        _add_time_to_df(odf, task.__name__, time.time() - start)

    # Runs
    start = time.time()
    workflow.execute_entity_task(tasks.run_random_climate,
                                 gdirs,
                                 nyears=250,
                                 bias=0,
                                 seed=0,
                                 output_filesuffix='_tstar')
    _add_time_to_df(odf, 'run_random_climate_tstar_250', time.time() - start)

    start = time.time()
    workflow.execute_entity_task(tasks.run_random_climate,
                                 gdirs,
                                 nyears=250,
                                 y0=1995,
                                 seed=0,
                                 output_filesuffix='_commit')
    _add_time_to_df(odf, 'run_random_climate_commit_250', time.time() - start)

    # Compile results
    start = time.time()
    utils.compile_glacier_statistics(gdirs)
    _add_time_to_df(odf, 'compile_glacier_statistics', time.time() - start)

    start = time.time()
    utils.compile_climate_statistics(gdirs,
                                     add_climate_period=[1920, 1960, 2000])
    _add_time_to_df(odf, 'compile_climate_statistics', time.time() - start)

    start = time.time()
    utils.compile_run_output(gdirs, input_filesuffix='_tstar')
    _add_time_to_df(odf, 'compile_run_output_tstar', time.time() - start)

    start = time.time()
    utils.compile_run_output(gdirs, input_filesuffix='_commit')
    _add_time_to_df(odf, 'compile_run_output_commit', time.time() - start)

    # Log
    opath = os.path.join(base_dir, 'benchmarks_b{:03d}.csv'.format(border))
    odf.index.name = 'Task'
    odf.to_csv(opath)
    log.workflow('OGGM benchmarks is done!')
Ejemplo n.º 20
0
def run_prepro_levels(rgi_version=None, rgi_reg=None, border=None,
                      output_folder='', working_dir='', is_test=False,
                      demo=False, test_rgidf=None, test_intersects_file=None,
                      test_topofile=None, test_crudir=None):
    """Does the actual job.

    Parameters
    ----------
    rgi_version : str
        the RGI version to use (defaults to cfg.PARAMS)
    rgi_reg : str
        the RGI region to process
    border : int
        the number of pixels at the maps border
    output_folder : str
        path to the output folder (where to put the preprocessed tar files)
    working_dir : str
        path to the OGGM working directory
    is_test : bool
        to test on a couple of glaciers only!
    demo : bool
        to run the prepro for the list of demo glaciers
    test_rgidf : shapefile
        for testing purposes only
    test_intersects_file : shapefile
        for testing purposes only
    test_topofile : str
        for testing purposes only
    test_crudir : str
        for testing purposes only
    """

    # TODO: temporarily silence Fiona deprecation warnings
    import warnings
    warnings.filterwarnings("ignore", category=DeprecationWarning)

    # Module logger
    log = logging.getLogger(__name__)

    # Time
    start = time.time()

    # Initialize OGGM and set up the run parameters
    cfg.initialize(logging_level='WORKFLOW')

    # Local paths
    utils.mkdir(working_dir)
    cfg.PATHS['working_dir'] = working_dir

    # Use multiprocessing?
    cfg.PARAMS['use_multiprocessing'] = True

    # How many grid points around the glacier?
    # Make it large if you expect your glaciers to grow large
    cfg.PARAMS['border'] = border

    # Set to True for operational runs
    cfg.PARAMS['continue_on_error'] = True

    # For statistics
    climate_periods = [1920, 1960, 2000]

    if rgi_version is None:
        rgi_version = cfg.PARAMS['rgi_version']
    rgi_dir_name = 'RGI{}'.format(rgi_version)
    border_dir_name = 'b_{:03d}'.format(border)
    base_dir = os.path.join(output_folder, rgi_dir_name, border_dir_name)

    # Add a package version file
    utils.mkdir(base_dir)
    opath = os.path.join(base_dir, 'package_versions.txt')
    with open(opath, 'w') as vfile:
        vfile.write(utils.show_versions(logger=log))

    if demo:
        rgidf = utils.get_rgi_glacier_entities(cfg.DEMO_GLACIERS.index)
    elif test_rgidf is None:
        # Get the RGI file
        rgidf = gpd.read_file(utils.get_rgi_region_file(rgi_reg,
                                                        version=rgi_version))
        # We use intersects
        rgif = utils.get_rgi_intersects_region_file(rgi_reg,
                                                    version=rgi_version)
        cfg.set_intersects_db(rgif)
    else:
        rgidf = test_rgidf
        cfg.set_intersects_db(test_intersects_file)

    if is_test:
        # Just for fun
        rgidf = rgidf.sample(4)

    # Sort for more efficient parallel computing
    rgidf = rgidf.sort_values('Area', ascending=False)

    log.workflow('Starting prepro run for RGI reg: {} '
                 'and border: {}'.format(rgi_reg, border))
    log.workflow('Number of glaciers: {}'.format(len(rgidf)))

    # Input
    if test_topofile:
        cfg.PATHS['dem_file'] = test_topofile

    # L1 - initialize working directories
    gdirs = workflow.init_glacier_regions(rgidf, reset=True, force=True)

    # Glacier stats
    sum_dir = os.path.join(base_dir, 'L1', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # L1 OK - compress all in output directory
    l_base_dir = os.path.join(base_dir, 'L1')
    workflow.execute_entity_task(utils.gdir_to_tar, gdirs, delete=False,
                                 base_dir=l_base_dir)
    utils.base_dir_to_tar(l_base_dir)

    # L2 - Tasks
    # Pre-download other files just in case
    if test_crudir is None:
        _ = utils.get_cru_file(var='tmp')
        _ = utils.get_cru_file(var='pre')
    else:
        cfg.PATHS['cru_dir'] = test_crudir

    workflow.execute_entity_task(tasks.process_cru_data, gdirs)

    # Glacier stats
    sum_dir = os.path.join(base_dir, 'L2', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # L2 OK - compress all in output directory
    l_base_dir = os.path.join(base_dir, 'L2')
    workflow.execute_entity_task(utils.gdir_to_tar, gdirs, delete=False,
                                 base_dir=l_base_dir)
    utils.base_dir_to_tar(l_base_dir)

    # L3 - Tasks
    task_list = [
        tasks.glacier_masks,
        tasks.compute_centerlines,
        tasks.initialize_flowlines,
        tasks.compute_downstream_line,
        tasks.compute_downstream_bedshape,
        tasks.catchment_area,
        tasks.catchment_intersections,
        tasks.catchment_width_geom,
        tasks.catchment_width_correction,
        tasks.local_t_star,
        tasks.mu_star_calibration,
        tasks.prepare_for_inversion,
        tasks.mass_conservation_inversion,
        tasks.filter_inversion_output,
    ]
    for task in task_list:
        workflow.execute_entity_task(task, gdirs)

    # Glacier stats
    sum_dir = os.path.join(base_dir, 'L3', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)
    opath = os.path.join(sum_dir, 'climate_statistics_{}.csv'.format(rgi_reg))
    utils.compile_climate_statistics(gdirs, add_climate_period=climate_periods,
                                     path=opath)

    # L3 OK - compress all in output directory
    l_base_dir = os.path.join(base_dir, 'L3')
    workflow.execute_entity_task(utils.gdir_to_tar, gdirs, delete=False,
                                 base_dir=l_base_dir)
    utils.base_dir_to_tar(l_base_dir)

    # L4 - Tasks
    workflow.execute_entity_task(tasks.init_present_time_glacier, gdirs)

    # Glacier stats
    sum_dir = os.path.join(base_dir, 'L4', 'summary')
    utils.mkdir(sum_dir)
    opath = os.path.join(sum_dir, 'glacier_statistics_{}.csv'.format(rgi_reg))
    utils.compile_glacier_statistics(gdirs, path=opath)

    # Copy mini data to new dir
    base_dir = os.path.join(base_dir, 'L4')
    mini_gdirs = workflow.execute_entity_task(tasks.copy_to_basedir, gdirs,
                                              base_dir=base_dir)

    # L4 OK - compress all in output directory
    workflow.execute_entity_task(utils.gdir_to_tar, mini_gdirs, delete=True)
    utils.base_dir_to_tar(base_dir)

    # Log
    m, s = divmod(time.time() - start, 60)
    h, m = divmod(m, 60)
    log.workflow('OGGM prepro_levels is done! Time needed: '
                 '{:02d}:{:02d}:{:02d}'.format(int(h), int(m), int(s)))
Ejemplo n.º 21
0
    def setup_cache(self):

        setattr(full_workflow.setup_cache, "timeout", 360)

        utils.mkdir(self.testdir, reset=True)
        self.cfg_init()

        # Pre-download other files which will be needed later
        utils.get_cru_cl_file()
        utils.get_cru_file(var='tmp')
        utils.get_cru_file(var='pre')

        # Get the RGI glaciers for the run.
        rgi_list = ['RGI60-01.10299', 'RGI60-11.00897', 'RGI60-18.02342']
        rgidf = utils.get_rgi_glacier_entities(rgi_list)

        # We use intersects
        db = utils.get_rgi_intersects_region_file(version='61',
                                                  rgi_ids=rgi_list)
        cfg.set_intersects_db(db)

        # Sort for more efficient parallel computing
        rgidf = rgidf.sort_values('Area', ascending=False)

        # Go - initialize working directories
        gdirs = workflow.init_glacier_regions(rgidf)

        # Preprocessing tasks
        task_list = [
            tasks.glacier_masks,
            tasks.compute_centerlines,
            tasks.initialize_flowlines,
            tasks.compute_downstream_line,
            tasks.compute_downstream_bedshape,
            tasks.catchment_area,
            tasks.catchment_intersections,
            tasks.catchment_width_geom,
            tasks.catchment_width_correction,
        ]
        for task in task_list:
            execute_entity_task(task, gdirs)

        # Climate tasks -- only data IO and tstar interpolation!
        execute_entity_task(tasks.process_cru_data, gdirs)
        execute_entity_task(tasks.local_mustar, gdirs)
        execute_entity_task(tasks.apparent_mb, gdirs)

        # Inversion tasks
        execute_entity_task(tasks.prepare_for_inversion, gdirs)
        # We use the default parameters for this run
        execute_entity_task(tasks.mass_conservation_inversion, gdirs)
        execute_entity_task(tasks.filter_inversion_output, gdirs)

        # Final preparation for the run
        execute_entity_task(tasks.init_present_time_glacier, gdirs)

        # Random climate representative for the tstar climate, without bias
        # In an ideal world this would imply that the glaciers remain stable,
        # but it doesn't have to be so
        execute_entity_task(tasks.run_constant_climate,
                            gdirs,
                            bias=0,
                            nyears=100,
                            output_filesuffix='_tstar')

        execute_entity_task(tasks.run_constant_climate,
                            gdirs,
                            y0=1990,
                            nyears=100,
                            output_filesuffix='_pd')

        # Compile output
        utils.glacier_characteristics(gdirs)
        utils.compile_run_output(gdirs, filesuffix='_tstar')
        utils.compile_run_output(gdirs, filesuffix='_pd')
        utils.compile_climate_input(gdirs)

        return gdirs
Ejemplo n.º 22
0
cfg.PATHS['working_dir'] = WORKING_DIR

# Use multiprocessing?
cfg.PARAMS['use_multiprocessing'] = True

# Here we override some of the default parameters
# How many grid points around the glacier?
# Make it large if you expect your glaciers to grow large
cfg.PARAMS['border'] = 100

# Set to True for operational runs
cfg.PARAMS['continue_on_error'] = False

# We use intersects
# Here we use the global file but there are regional files too (faster)
cfg.set_intersects_db(utils.get_rgi_intersects_region_file('00', version='5'))

# Pre-download other files which will be needed later
utils.get_cru_cl_file()
utils.get_cru_file(var='tmp')
utils.get_cru_file(var='pre')

# Download the RGI file for the run
# We us a set of four glaciers here but this could be an entire RGI region,
# or any glacier list you'd like to model
dl = 'https://cluster.klima.uni-bremen.de/~fmaussion/misc/RGI_example_glaciers.zip'
with zipfile.ZipFile(utils.file_downloader(dl)) as zf:
    zf.extractall(WORKING_DIR)
rgidf = salem.read_shapefile(
    path.join(WORKING_DIR, 'RGI_example_glaciers', 'RGI_example_glaciers.shp'))
Ejemplo n.º 23
0
    cfg.PARAMS['use_bias_for_run'] = True

    # read RGI entry for the glaciers as DataFrame
    # containing the outline area as shapefile
    rgi_reg = os.environ.get('OGGM_RGI_REG', '')
    if rgi_reg not in ['{:02d}'.format(r) for r in range(1, 20)]:
        raise RuntimeError('Need an RGI Region')
    rgi_ids = gpd.read_file(
        utils.get_rgi_region_file(rgi_reg, version=rgi_version))

    # For greenland we omit connectivity level 2
    if rgi_reg == '05':
        rgi_ids = rgi_ids.loc[rgi_ids['Connect'] != 2]

    # get and set path to intersect shapefile
    intersects_db = utils.get_rgi_intersects_region_file(region=rgi_reg)
    cfg.set_intersects_db(intersects_db)

    # operational run, all glaciers should run
    cfg.PARAMS['use_multiprocessing'] = True
    cfg.PARAMS['continue_on_error'] = True

    # Module logger
    log = logging.getLogger(__name__)
    log.workflow('Starting run for RGI reg {}'.format(rgi_reg))

    # Go - get the pre-processed glacier directories
    base_url = "https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/" \
               "L3-L5_files/CRU/elev_bands/qc3/pcp2.5/match_geod"
    gdirs = workflow.init_glacier_directories(rgi_ids, from_prepro_level=3,
                                              prepro_base_url=base_url,
Ejemplo n.º 24
0
def configure(workdir, glclist, baselineclimate='HISTALP', resetwd=False):
    global MERGEDICT
    global GLCDICT
    global ADDITIONAL_REFERENCE_GLACIERS

    # Initialize OGGM
    cfg.initialize()
    cfg.PATHS['working_dir'] = workdir

    # Local working directory (where OGGM will write its output)
    utils.mkdir(workdir, reset=resetwd)

    # Use multiprocessing?
    cfg.PARAMS['use_multiprocessing'] = True

    # Set to True for operational runs
    cfg.PARAMS['continue_on_error'] = False

    # We use intersects
    cfg.PARAMS['use_intersects'] = True
    rgif = utils.get_rgi_intersects_region_file('11', version='60')
    cfg.set_intersects_db(rgif)

    cfg.PARAMS['use_rgi_area'] = True

    # set negative flux filtering to false. should be standard soon
    cfg.PARAMS['filter_for_neg_flux'] = False
    cfg.PARAMS['correct_for_neg_flux'] = True

    # here in relic we want to run the mb calibration every time
    cfg.PARAMS['run_mb_calibration'] = True

    # glacier length
    cfg.PARAMS['min_ice_thick_for_length'] = 1.0
    cfg.PARAMS['glacier_length_method'] = 'consecutive'

    # check if we want to merge a glacier
    mglclist = []
    for glc in glclist:
        mglc = merge_pair_dict(glc)
        if mglc is not None:
            mglclist += mglc[0]

    # How many grid points around the glacier?
    # Make it large if you expect your glaciers to grow large
    cfg.PARAMS['border'] = 160

    gdirs = workflow.init_glacier_regions(glclist + mglclist,
                                          from_prepro_level=3)

    # and we want to use all glaciers for the MB calibration
    refids = get_ref_mb_glaciers_candidates()
    # right now we only do Alpine glaciers
    refids = [rid for rid in refids if '-11.' in rid]
    # but do leave out the actual glaciers
    refids = [rid for rid in refids if rid not in glclist + mglclist]
    # I SAID ALPS, NOT PYRENEES
    refids.remove('RGI60-11.03232')
    refids.remove('RGI60-11.03209')
    refids.remove('RGI60-11.03241')
    # initialize the reference glaciers with a small border
    ref_gdirs = workflow.init_glacier_regions(rgidf=refids,
                                              from_prepro_level=3,
                                              prepro_border=10)
    # save these ids for later
    ADDITIONAL_REFERENCE_GLACIERS = refids

    # climate
    if baselineclimate == 'CRU':
        cfg.PARAMS['prcp_scaling_factor'] = 2.5
        cfg.PARAMS['temp_melt'] = -1.0

    if baselineclimate == 'HISTALP':
        cfg.PARAMS['baseline_climate'] = baselineclimate
        # and set standard histalp values
        cfg.PARAMS['prcp_scaling_factor'] = 1.75
        cfg.PARAMS['temp_melt'] = -1.75
        # run histalp climate on all glaciers!
        execute_entity_task(tasks.process_histalp_data,
                            gdirs + ref_gdirs,
                            y0=1849)

    # TODO: if I do use custom climate stuff like histalp_annual_mean:
    #   ->>>> look back at commits before 1.10.2019

    return gdirs
Ejemplo n.º 25
0
def seek_start_area(rgi_id,
                    name,
                    show=False,
                    path='',
                    ref=np.NaN,
                    adjust_term_elev=False,
                    legend=True,
                    instant_geometry_change=False):
    """ Set up an VAS model from scratch and run/test the start area seeking
    tasks. The result is a plot showing the modeled glacier area evolution for
    different start values. The plots can be displayed and/or stored to file.

    Parameters
    ----------
    rgi_id: string
        RGI ID denoting the glacier on which to perform the tasks
    name: string
        Name og glacier, since it is not always given (or correct) in RGI
    show: bool, optional, default=False
        Flag deciding whether or not to show the created plots.
    path: string, optional, default=''
        Path under which the modeled area plot should be stored.
    ref: float, optional, default=np.NaN
        Historic (1851) reference area with which a reference model run is
        performed.

    """
    # Initialization and load default parameter file
    vascaling.initialize()

    # compute RGI region and version from RGI IDs
    # assuming they all are all the same
    rgi_region = (rgi_id.split('-')[-1]).split('.')[0]
    rgi_version = (rgi_id.split('-')[0])[-2:-1]

    # specify working directory and output directory
    working_dir = os.path.abspath('../working_directories/start_area/')
    # output_dir = os.path.abspath('./vas_run_output')
    output_dir = os.path.abspath('../data/vas_run_output')
    # create working directory
    utils.mkdir(working_dir, reset=False)
    utils.mkdir(output_dir)
    # set path to working directory
    cfg.PATHS['working_dir'] = working_dir
    # set RGI version and region
    cfg.PARAMS['rgi_version'] = rgi_version
    # define how many grid points to use around the glacier,
    # if you expect the glacier to grow large use a larger border
    cfg.PARAMS['border'] = 20
    # we use HistAlp climate data
    cfg.PARAMS['baseline_climate'] = 'HISTALP'
    # set the mb hyper parameters accordingly
    cfg.PARAMS['prcp_scaling_factor'] = 1.75
    cfg.PARAMS['temp_melt'] = -1.75
    cfg.PARAMS['run_mb_calibration'] = False

    # the bias is defined to be zero during the calibration process,
    # which is why we don't use it here to reproduce the results
    cfg.PARAMS['use_bias_for_run'] = True

    # get/downlaod the rgi entity including the outline shapefile
    rgi_df = utils.get_rgi_glacier_entities([rgi_id])
    # set name, if not delivered with RGI
    if rgi_df.loc[int(rgi_id[-5:]) - 1, 'Name'] is None:
        rgi_df.loc[int(rgi_id[-5:]) - 1, 'Name'] = name

    # get and set path to intersect shapefile
    intersects_db = utils.get_rgi_intersects_region_file(region=rgi_region)
    cfg.set_intersects_db(intersects_db)

    # initialize the GlacierDirectory
    gdir = workflow.init_glacier_directories(rgi_df)[0]

    # # DEM and GIS tasks
    # # get the path to the DEM file (will download if necessary)
    # dem = utils.get_topo_file(gdir.cenlon, gdir.cenlat)
    # print('DEM source: {}, path to DEM file: {}'.format(dem[1], dem[0][0]))
    # # set path in config file
    # cfg.PATHS['dem_file'] = dem[0][0]
    # cfg.PARAMS['border'] = 10
    # cfg.PARAMS['use_intersects'] = False

    # run GIS tasks
    gis.define_glacier_region(gdir)
    gis.glacier_masks(gdir)

    # process climate data
    climate.process_climate_data(gdir)

    #  compute local t* and the corresponding mu*
    vascaling.local_t_star(gdir)

    # create mass balance model
    mb_mod = vascaling.VAScalingMassBalance(gdir)

    # look at specific mass balance over climate data period
    min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir)
    y0 = 1851
    y1 = 2014

    # run scalar minimization
    minimize_res = vascaling.find_start_area(
        gdir,
        adjust_term_elev=adjust_term_elev,
        instant_geometry_change=instant_geometry_change)
    # print(minimize_res)

    # stop script if minimization was not successful
    if minimize_res.status and False:
        sys.exit(minimize_res.status)

    # instance glacier with today's values
    model_ref = vascaling.VAScalingModel(year_0=gdir.rgi_date,
                                         area_m2_0=gdir.rgi_area_m2,
                                         min_hgt=min_hgt,
                                         max_hgt=max_hgt,
                                         mb_model=mb_mod)

    # instance guessed starting areas
    num = 9
    area_guess = np.linspace(1e6,
                             np.floor(gdir.rgi_area_m2 * 2),
                             num,
                             endpoint=True)
    # create empty containers
    area_list = list()
    volume_list = list()
    spec_mb_list = list()

    # iterate over all starting areas
    for area_ in area_guess:
        # instance iteration model
        model_guess = vascaling.VAScalingModel(year_0=gdir.rgi_date,
                                               area_m2_0=gdir.rgi_area_m2,
                                               min_hgt=min_hgt,
                                               max_hgt=max_hgt,
                                               mb_model=mb_mod)
        # set new starting values
        model_guess.create_start_glacier(area_,
                                         y0,
                                         adjust_term_elev=adjust_term_elev)
        # run model and save years and area
        best_guess_ds = model_guess.run_until_and_store(
            year_end=model_ref.year,
            instant_geometry_change=instant_geometry_change)
        # create series and store in container
        area_list.append(best_guess_ds.area_m2.to_dataframe()['area_m2'])
        volume_list.append(best_guess_ds.volume_m3.to_dataframe()['volume_m3'])
        spec_mb_list.append(best_guess_ds.spec_mb.to_dataframe()['spec_mb'])

    # create DataFrame
    area_df = pd.DataFrame(
        area_list, index=['{:.2f}'.format(a / 1e6) for a in area_guess])
    area_df.index.name = 'Start Area [km$^2$]'

    volume_df = pd.DataFrame(
        volume_list, index=['{:.2f}'.format(a / 1e6) for a in area_guess])
    volume_df.index.name = 'Start Area [km$^2$]'

    # set up model with resulted starting area
    model = vascaling.VAScalingModel(year_0=model_ref.year_0,
                                     area_m2_0=model_ref.area_m2_0,
                                     min_hgt=model_ref.min_hgt_0,
                                     max_hgt=model_ref.max_hgt,
                                     mb_model=model_ref.mb_model)
    model.create_start_glacier(minimize_res.x,
                               y0,
                               adjust_term_elev=adjust_term_elev)

    # run model with best guess initial area
    best_guess_ds = model.run_until_and_store(
        year_end=model_ref.year,
        instant_geometry_change=instant_geometry_change)
    # run model with historic reference area
    if ref:
        model.reset()
        model.create_start_glacier(ref * 1e6,
                                   y0,
                                   adjust_term_elev=adjust_term_elev)
        ref_ds = model.run_until_and_store(
            year_end=model_ref.year,
            instant_geometry_change=instant_geometry_change)

    # create figure and add axes
    fig = plt.figure(figsize=[5, 5])
    ax = fig.add_axes([0.125, 0.075, 0.85, 0.9])

    # plot model output
    ax = (area_df / 1e6).T.plot(legend=False, colormap='Spectral', ax=ax)

    # plot best guess
    ax.plot(
        best_guess_ds.time,
        best_guess_ds.area_m2 / 1e6,
        color='k',
        ls='--',
        lw=1.2,
        label=
        f'{best_guess_ds.area_m2.isel(time=0).values/1e6:.2f} km$^2$ (best result)'
    )
    # plot reference
    if ref:
        ax.plot(
            ref_ds.time,
            ref_ds.area_m2 / 1e6,
            color='k',
            ls='-.',
            lw=1.2,
            label=
            f'{ref_ds.area_m2.isel(time=0).values/1e6:.2f} km$^2$ (1850 ref.)')

    # plot 2003 reference line
    ax.axhline(
        model_ref.area_m2_0 / 1e6,
        c='k',
        ls=':',
        label=f'{model_ref.area_m2_0/1e6:.2f} km$^2$ ({gdir.rgi_date} obs.)')

    # add legend
    if legend:
        handels, labels = ax.get_legend_handles_labels()
        labels[:-3] = [r'{} km$^2$'.format(l) for l in labels[:-3]]
        leg = ax.legend(handels, labels, loc='upper right', ncol=2)
        # leg.set_title('Start area $A_0$', prop={'size': 12})

    # replot best guess estimate and reference (in case it lies below another
    # guess)
    ax.plot(best_guess_ds.time,
            best_guess_ds.area_m2 / 1e6,
            color='k',
            ls='--',
            lw=1.2)
    if ref:
        ax.plot(ref_ds.time, ref_ds.area_m2 / 1e6, color='k', ls='-.', lw=1.2)

    # labels, title
    ax.set_xlim([best_guess_ds.time.values[0], best_guess_ds.time.values[-1]])
    ax.set_xlabel('')
    ax.set_ylabel('Glacier area [km$^2$]')

    # save figure to file
    if path:
        fig.savefig(path)

    # show plot
    if show:
        plt.show()
    plt.clf()

    # plot and store volume evolution
    (volume_df / 1e9).T.plot(legend=False, colormap='viridis')
    plt.gcf().savefig(path[:-4] + '_volume.pdf')
Ejemplo n.º 26
0
def run_cmip():
    # Initialize OGGM and set up the default run parameters
    vascaling.initialize(logging_level='WORKFLOW')
    rgi_version = '62'
    cfg.PARAMS['border'] = 80

    # CLUSTER paths
    wdir = os.environ.get('WORKDIR', '')
    cfg.PATHS['working_dir'] = wdir
    outdir = os.environ.get('OUTDIR', '')

    # define the baseline climate CRU or HISTALP
    cfg.PARAMS['baseline_climate'] = 'CRU'
    # set the mb hyper parameters accordingly
    cfg.PARAMS['prcp_scaling_factor'] = 3
    cfg.PARAMS['temp_melt'] = 0
    cfg.PARAMS['temp_all_solid'] = 4
    cfg.PARAMS['run_mb_calibration'] = False
    # set minimum ice thickness to include in glacier length computation
    # this reduces weird spikes in length records
    cfg.PARAMS['min_ice_thick_for_length'] = 0.1

    # the bias is defined to be zero during the calibration process,
    # which is why we don't use it here to reproduce the results
    cfg.PARAMS['use_bias_for_run'] = True

    # read RGI entry for the glaciers as DataFrame
    # containing the outline area as shapefile
    # RGI glaciers
    rgi_reg = os.environ.get('OGGM_RGI_REG', '')
    if rgi_reg not in ['{:02d}'.format(r) for r in range(1, 20)]:
        raise RuntimeError('Need an RGI Region')
    rgi_ids = gpd.read_file(
        utils.get_rgi_region_file(rgi_reg, version=rgi_version))

    # get and set path to intersect shapefile
    intersects_db = utils.get_rgi_intersects_region_file(region=rgi_reg)
    cfg.set_intersects_db(intersects_db)

    # operational run, all glaciers should run
    cfg.PARAMS['continue_on_error'] = True

    # Module logger
    log = logging.getLogger(__name__)
    log.workflow('Starting run for RGI reg {}'.format(rgi_reg))

    # Go - get the pre-processed glacier directories
    # base_url = 'https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.4/' \
    #            'L3-L5_files/RGIV62_fleb_qc3_CRU_pcp2.5'
    prepro_dir = '/home/users/moberrauch/run_output/vas_prepro/'
    gdirs = workflow.init_glacier_directories(rgi_ids, from_tar=prepro_dir)

    # # run vascaling climate tasks
    # workflow.execute_entity_task(vascaling.local_t_star, gdirs)
    # # adjust mass balance residual with geodetic observations
    # vascaling.match_regional_geodetic_mb(gdirs=gdirs, rgi_reg=rgi_reg)
    # # prepare historic "spinup"
    # workflow.execute_entity_task(vascaling.run_from_climate_data, gdirs,
    #                              ys=2003, ye=2020,
    #                              output_filesuffix='_historical')

    # read gcm list
    gcms = pd.read_csv('/home/www/oggm/cmip6/all_gcm_list.csv', index_col=0)

    # iterate over all specified gcms
    for gcm in sys.argv[1:]:
        # iterate over all SSPs (Shared Socioeconomic Pathways)
        df1 = gcms.loc[gcms.gcm == gcm]
        for ssp in df1.ssp.unique():
            df2 = df1.loc[df1.ssp == ssp]
            assert len(df2) == 2
            # get temperature projections
            ft = df2.loc[df2['var'] == 'tas'].iloc[0]
            # get precipitation projections
            fp = df2.loc[df2['var'] == 'pr'].iloc[0].path
            rid = ft.fname.replace('_r1i1p1f1_tas.nc', '')
            ft = ft.path

            log.workflow('Starting run for {}'.format(rid))

            workflow.execute_entity_task(
                gcm_climate.process_cmip_data,
                gdirs,
                filesuffix='_' + rid,
                # recognize the climate file for later
                fpath_temp=ft,
                # temperature projections
                fpath_precip=fp,  # precip projections
                year_range=('1981', '2020'))

            workflow.execute_entity_task(vascaling.run_from_climate_data,
                                         gdirs,
                                         climate_filename='gcm_data',
                                         climate_input_filesuffix='_' + rid,
                                         init_model_filesuffix='_historical',
                                         output_filesuffix=rid,
                                         return_value=False)
            gcm_dir = os.path.join(outdir, 'RGI' + rgi_reg, gcm)
            utils.mkdir(gcm_dir)
            utils.compile_run_output(gdirs,
                                     input_filesuffix=rid,
                                     path=os.path.join(gcm_dir, rid + '.nc'))

    log.workflow('OGGM Done')
cfg.PATHS['working_dir'] = WORKING_DIR
# Use multiprocessing
cfg.PARAMS['use_multiprocessing'] = True
# We make the border 80 so we can use the Columbia itmix DEM
cfg.PARAMS['border'] = 20
# Set to True for operational runs
cfg.PARAMS['continue_on_error'] = True
#For tidewater we set this to False
cfg.PARAMS['correct_for_neg_flux'] = False
cfg.PARAMS['filter_for_neg_flux'] = False
# We will needs this set to true for the calving loop
cfg.PARAMS['allow_negative_mustar'] = True

# We use intersects
path = utils.get_rgi_intersects_region_file(rgi_region, version=rgi_version)
cfg.set_intersects_db(path)

# RGI file, 4 Marine-terminating glaciers were merged with their respective
# branches, this is why we use our own version of RGI v6
rgidf = gpd.read_file(RGI_FILE)

# Pre-download other files which will be needed later
_ = utils.get_cru_file(var='tmp')
p = utils.get_cru_file(var='pre')
print('CRU file: ' + p)

# Some controllers maybe this is not necessary
RUN_GIS_mask = True
RUN_GIS_PREPRO = True  # run GIS pre-processing tasks (before climate)
RUN_CLIMATE_PREPRO = True  # run climate pre-processing tasks
Ejemplo n.º 28
0
def sensitivity_run_vas(rgi_ids,
                        use_random_mb=False,
                        use_mean=False,
                        path=True,
                        temp_bias=0,
                        tstar=None,
                        use_default_tstar=True,
                        use_bias_for_run=True,
                        scaling_params=[(4.5507, 0.191, 2.2, 1.375)],
                        time_scale_factors=[1],
                        suffixes=['_default'],
                        **kwargs):
    """ The routine runs all steps for the equilibrium experiments using the
    volume/area scaling model (cf. `equilibrium_run_vas`) but for only one
    given temperature bias. However, it is possible to supply a list of
    sensitivity parameters (the scaling constants, and time scale factor) to
    alter the model behavior.
    - OGGM preprocessing, including initialization, GIS tasks, climate tasks and
      massbalance tasks.
    - Run model for all glaciers with constant (or random) massbalance model
      over 3000 years (default value).
    - Process the model output dataset(s), i.e. normalization, average/sum, ...

    The final dataset containing all results is returned. Given a path is is
    also stored to file.

    Parameters
    ----------
    rgi_ids: array-like
        List of RGI IDs for which the equilibrium experiments are performed.
    use_random_mb: bool, optional, default=True
        Choose between random massbalance model and constant massbalance model.
    use_mean: bool, optional, default=False
        Choose between the mean or summation over all glaciers
    path: bool or str, optional, default=True
        If a path is given (or True), the resulting dataset is stored to file.
    temp_bias: float, optional, default=0
        Temperature bias (degC) for the mass balance model.
    sensitivity_params: multi-dimensional array-like, optional,
        default=[(4.5507, 0.191, 2.2, 1.375)]
        List containing the scaling constants and scaling exponents for length
        and area scaling as tuples, e.g., (c_l, c_a, q, gamma)
    suffixes: array-like, optional, default=['_default']
        Descriptive suffixes corresponding to the given sensitivity params
    tstar: float, optional, default=None
        'Equilibrium year' used for the mass balance calibration.
    use_default_tstar: bool, optional, default=True
        Flag deciding whether or not to compute mustar from given from reference
        table. Overridden by a given tstar.
    use_bias_for_run: bool, optional, default=True
        Flag deciding whether or not to use the mass balance residual.
    kwargs:
        Additional key word arguments for the `run_random_climate` or
        `run_constant_climate` routines of the vascaling module.

    Returns
    -------
    Dataset containing yearly values of all glacier geometries.

    """
    # assert correct output file suffixes for temp biases
    if len(scaling_params) * len(time_scale_factors) != len(suffixes):
        raise RuntimeError("Each given combination of scaling parameters and "
                           "time scale factor must have its corresponding"
                           "suffix.")

    # OGGM preprocessing
    # ------------------

    # compute RGI region and version from RGI IDs
    # assuming all they are all the same
    rgi_region = (rgi_ids[0].split('-')[-1]).split('.')[0]
    rgi_version = (rgi_ids[0].split('-')[0])[-2:-1]

    # load default parameter file
    vascaling.initialize()

    # get environmental variables for working and output directories
    WORKING_DIR = os.environ["WORKDIR"]
    OUTPUT_DIR = os.environ["OUTDIR"]
    # create working directory
    utils.mkdir(WORKING_DIR)
    utils.mkdir(OUTPUT_DIR)
    # set path to working directory
    cfg.PATHS['working_dir'] = WORKING_DIR
    # set RGI version and region
    cfg.PARAMS['rgi_version'] = rgi_version
    # define how many grid points to use around the glacier,
    # if you expect the glacier to grow large use a larger border
    cfg.PARAMS['border'] = 120
    # we use HistAlp climate data
    cfg.PARAMS['baseline_climate'] = 'HISTALP'
    # set the mb hyper parameters accordingly
    cfg.PARAMS['prcp_scaling_factor'] = 2.5
    cfg.PARAMS['temp_melt'] = -0.5
    # the bias is defined to be zero during the calibration process,
    # which is why we don't use it here to reproduce the results
    cfg.PARAMS['use_bias_for_run'] = use_bias_for_run
    # set minimum ice thickness to include in glacier length computation
    # this reduces weird spikes in length records
    cfg.PARAMS['min_ice_thick_for_length'] = 0.1

    # read RGI entry for the glaciers as DataFrame
    # containing the outline area as shapefile
    rgidf = utils.get_rgi_glacier_entities(rgi_ids)

    # get and set path to intersect shapefile
    intersects_db = utils.get_rgi_intersects_region_file(region=rgi_region)
    cfg.set_intersects_db(intersects_db)

    # sort by area for more efficient parallel computing
    rgidf = rgidf.sort_values('Area', ascending=False)
    cfg.PARAMS['use_multiprocessing'] = True
    # operational run, all glaciers should run
    cfg.PARAMS['continue_on_error'] = True

    # initialize the GlacierDirectory
    gdirs = workflow.init_glacier_directories(rgidf, reset=False, force=True)

    # define the local grid and glacier mask
    workflow.execute_entity_task(gis.define_glacier_region, gdirs)
    workflow.execute_entity_task(gis.glacier_masks, gdirs)
    # process the given climate file
    workflow.execute_entity_task(climate.process_climate_data, gdirs)
    # compute local t* and the corresponding mu*
    if tstar or use_default_tstar:
        # compute mustar from given tstar or reference table
        workflow.execute_entity_task(vascaling.local_t_star,
                                     gdirs,
                                     tstar=tstar,
                                     bias=0)
    else:
        # compute mustar from the reference table for the flowline model
        # RGI v6 and HISTALP baseline climate
        ref_df = pd.read_csv(
            utils.get_demo_file('oggm_ref_tstars_rgi6_histalp.csv'))
        workflow.execute_entity_task(vascaling.local_t_star,
                                     gdirs,
                                     ref_df=ref_df)

    # Run model with constant/random mass balance model
    # -------------------------------------------------

    # use t* as center year, even if specified differently
    kwargs['y0'] = tstar
    # run for 3000 years if not specified otherwise
    kwargs.setdefault('nyears', 1000)

    # limit parameters to 3 decimal points
    scaling_params = recursive_round(scaling_params, 3)
    time_scale_factors = recursive_round(time_scale_factors, 3)
    # assure that scaling params are handled as tuples (pairs)
    scaling_params_list = np.zeros(len(scaling_params), dtype=object)
    scaling_params_list[:] = scaling_params
    # combine scaling constants, scaling exponents and time scale factor
    # into one iterable array
    sensitivity_params = np.array(
        np.meshgrid(scaling_params_list, time_scale_factors)).T
    sensitivity_params = (sensitivity_params.reshape(
        -1, sensitivity_params.shape[-1]))

    if use_random_mb:
        # set random seed to get reproducible results
        kwargs.setdefault('seed', 12)

        # run RandomMassBalance model centered around t* for each given
        # parameter set
        for suffix, params in zip(suffixes, sensitivity_params):
            cfg.PARAMS['vas_c_length_m'] = params[0][0]
            cfg.PARAMS['vas_c_area_m2'] = params[0][1]
            cfg.PARAMS['vas_q_length'] = params[0][2]
            cfg.PARAMS['vas_gamma_area'] = params[0][3]
            kwargs['time_scale_factor'] = params[1]
            workflow.execute_entity_task(vascaling.run_random_climate,
                                         gdirs,
                                         temperature_bias=temp_bias,
                                         output_filesuffix=suffix,
                                         **kwargs)
    else:
        # run ConstantMassBalance model centered around t* for each given
        # parameter set
        for suffix, params in zip(suffixes, sensitivity_params):
            cfg.PARAMS['vas_c_length_m'] = params[0][0]
            cfg.PARAMS['vas_c_area_m2'] = params[0][1]
            cfg.PARAMS['vas_q_length'] = params[0][2]
            cfg.PARAMS['vas_gamma_area'] = params[0][3]
            kwargs['time_scale_factor'] = params[1]
            workflow.execute_entity_task(vascaling.run_constant_climate,
                                         gdirs,
                                         temperature_bias=temp_bias,
                                         output_filesuffix=suffix,
                                         **kwargs)
    # Process output dataset(s)
    # -------------------------

    # create empty container
    ds = list()
    # iterate over all scaling constants
    for i, params in enumerate(scaling_params):
        # create empty container
        ds_ = list()
        # iterate over all time scale factor
        for j, factor in enumerate(time_scale_factors):
            # compile the output for each run
            pos = j + len(time_scale_factors) * i
            ds__ = utils.compile_run_output(np.atleast_1d(gdirs),
                                            filesuffix=suffixes[pos],
                                            path=False)
            # add time scale factor as coordinate
            ds__.coords['time_scale_factor'] = factor
            # add to container
            ds_.append(ds__)

        # concatenate using time scale factor as concat dimension
        ds_ = xr.concat(ds_, dim='time_scale_factor')
        # add scaling constants as coordinate
        params_list = np.zeros(len([params]), dtype=object)
        params_list[:] = [params]
        ds_ = ds_.expand_dims(dim={'scaling_params': params_list})
        # add to container
        ds.append(ds_)

    # concatenate using scaling constants as concat dimension
    ds = xr.concat(ds, dim='scaling_params')

    # add model type as coordinate
    ds.coords['model'] = 'vas'
    # add mb model type as coordinate
    ds.coords['mb_model'] = 'random' if use_random_mb else 'constant'

    # normalize glacier geometries (length/area/volume) with start value
    if use_mean:
        # compute average over all glaciers
        ds_normal = normalize_ds_with_start(ds).mean(dim='rgi_id')
        ds = ds.mean(dim='rgi_id')
    else:
        # compute sum over all glaciers
        ds_normal = normalize_ds_with_start(ds.sum(dim='rgi_id'))
        ds = ds.sum(dim='rgi_id')

    # add coordinate to distinguish between normalized and absolute values
    ds.coords['normalized'] = False
    ds_normal.coords['normalized'] = True

    # combine datasets
    ds = xr.concat([ds, ds_normal], 'normalized')

    # store datasets
    if path:
        if not isinstance(path, str):
            # set default path and filename
            mb = 'random' if use_random_mb else 'constant'
            path = os.path.join(OUTPUT_DIR, f'run_output_{mb}_vas.nc')
        # write to file
        log.info(f'Writing run output to {path}')
        pickle.dump(ds, open(path, mode='wb'))

    # return ds, ds_normal
    return ds