Ejemplo n.º 1
0
def bin2zip(parsed_pid,canonical_pid,targets,hdr,timestamp,roi_path,outfile):
    """parsed_pid - result of parsing pid
    canonical_pid - canonicalized with URL prefix
    targets - list of (stitched) targets
    hdr - result of parsing header file
    timestamp - timestamp (FIXME in what format?)
    roi_path - path to ROI file
    outfile - where to write resulting zip file"""
    bin_lid = parsed_pid['bin_lid']
    adc_cols = parsed_pid['adc_cols'].split(' ')
    targets = list(targets)
    with tempfile.SpooledTemporaryFile() as temp:
        z = ZipFile(temp,'w',ZIP_DEFLATED)
        csv_out = '\n'.join(targets2csv(targets, adc_cols))+'\n'
        z.writestr(bin_lid + '.csv', csv_out)
        xml_out = bin2xml(canonical_pid,hdr,targets,timestamp)
        z.writestr(bin_lid + '.xml', xml_out)
        with open(roi_path,'rb') as roi_file:
            for target in targets:
                if STITCHED in target and target[STITCHED] != 0:
                    subRois = [read_target_image(t,file=roi_file) for t in target[PAIR]]
                    im,_ = stitch(target[PAIR], subRois)
                else:
                    im = read_target_image(target, file=roi_file)
                target_lid = os.path.basename(target['pid'])
                z.writestr(target_lid + '.png', as_bytes(im, mimetype='image/png'))
        z.close()
        temp.seek(0)
        shutil.copyfileobj(temp, outfile)
Ejemplo n.º 2
0
Archivo: app.py Proyecto: LouisK130/oii
def serve_blob_image(parsed, mimetype, outline=False, target_img=None):
    # first, read the blob from the zipfile
    blob_zip = get_product_file(parsed, 'blobs')
    png_name = parsed['lid'] + '.png' # name is target LID + png extension
    png_data = get_zip_entry_bytes(blob_zip, png_name)
    # if we want a blob png, then pass it through without conversion
    if not outline and mimetype == 'image/png':
        return Response(png_data, mimetype='image/png')
    else:
        # read the png-formatted blob image into a PIL image
        pil_img = PIL.Image.open(StringIO(png_data))
        blob = np.array(pil_img.convert('L')) # convert to 8-bit grayscale
        if not outline: # unless we are drawing the outline
            return Response(as_bytes(blob), mimetype=mimetype) # format and serve
        else:
            blob_outline = find_boundaries(blob)
            roi = target_img
            blob = np.dstack([roi,roi,roi])
            blob[blob_outline] = [255,0,0]
            return Response(as_bytes(blob, mimetype), mimetype=mimetype)
Ejemplo n.º 3
0
Archivo: app.py Proyecto: LouisK130/oii
def serve_mosaic_image(time_series=None, pid=None, params='/'):
    """Generate a mosaic of ROIs from a sample bin.
    params include the following, with default values
    - series (mvco) - time series (FIXME: handle with resolver, clarify difference between namespace, time series, pid, lid)
    - size (1024x1024) - size of the mosaic image
    - page (1) - page. for typical image sizes the entire bin does not fit and so is split into pages.
    - scale - scaling factor for image dimensions """
    # parse params
    size, scale, page = parse_mosaic_params(params)
    (w,h) = size
    parsed = parse_pid(pid)
    schema_version = parsed['schema_version']
    try:
        paths = get_fileset(parsed)
    except NotFound:
        abort(404)
    adc_path = paths['adc_path']
    roi_path = paths['roi_path']
    bin_pid = canonicalize(get_url_root(), time_series, parsed['bin_lid'])
    # perform layout operation
    scaled_size = (int(w/scale), int(h/scale))
    layout = list(get_mosaic_layout(adc_path, schema_version, bin_pid, scaled_size, page))
    extension = parsed['extension']
    # serve JSON on request
    if extension == 'json':
        return Response(json.dumps(list(layout2json(layout, scale))), mimetype=MIME_JSON)
    mimetype = mimetypes.types_map['.' + extension]
    # read all images needed for compositing and inject into Tiles
    image_layout = []
    with open(roi_path,'rb') as roi_file:
        for tile in layout:
            target = tile.image # in mosaic API, the record is called 'image'
            # FIXME 1. replace PIL
            image = get_target_image(parsed, target, file=roi_file, raw_stitch=True)
            image_layout.append(Tile(PIL.Image.fromarray(image), tile.size, tile.position))
    # produce and serve composite image
    mosaic_image = thumbnail(mosaic.composite(image_layout, scaled_size, mode='L', bgcolor=160), (w,h))
    #pil_format = filename2format('foo.%s' % extension)
    return Response(as_bytes(mosaic_image), mimetype=mimetype)
Ejemplo n.º 4
0
Archivo: app.py Proyecto: LouisK130/oii
def serve_pid(pid):
    req = DashboardRequest(pid, request)
    try:
        paths = get_fileset(req.parsed)
    except NotFound:
        abort(404)
    hdr_path = paths['hdr_path']
    adc_path = paths['adc_path']
    roi_path = paths['roi_path']
    adc = Adc(adc_path, req.schema_version)
    heft = 'full' # heft is either short, medium, or full
    if 'extension' in req.parsed:
        extension = req.parsed['extension']
    if 'target' in req.parsed:
        canonical_bin_pid = canonicalize(req.url_root, req.time_series, req.bin_lid)
        target_no = int(req.parsed['target'])
        # pull three targets, then find any stitched pair
        targets = adc.get_some_targets(target_no-1, 3)
        targets = list_stitched_targets(targets)
        for t in targets:
            if t[TARGET_NUMBER] == target_no:
                target = t
        add_pid(target, canonical_bin_pid)
        # check for image
        mimetype = mimetypes.types_map['.' + extension]
        if mimetype.startswith('image/'):
            if req.product=='raw':
                img = get_target_image(req.parsed, target, roi_path)
                return Response(as_bytes(img,mimetype),mimetype=mimetype)
            if req.product=='blob':
                return serve_blob_image(req.parsed, mimetype)
            if req.product=='blob_outline':
                img = get_target_image(req.parsed, target, roi_path)
                return serve_blob_image(req.parsed, mimetype, outline=True, target_img=img)
        # not an image, so get more metadata
        targets = get_targets(adc, canonical_bin_pid)
        # not an image, check for JSON
        if extension == 'json':
            return Response(json.dumps(target),mimetype=MIME_JSON)
        target = get_target_metadata(target,targets)
        # more metadata representations. we'll need the header
        hdr = parse_hdr_file(hdr_path)
        if extension == 'xml':
            return Response(target2xml(req.canonical_pid, target, req.timestamp, canonical_bin_pid), mimetype='text/xml')
        if extension == 'rdf':
            return Response(target2rdf(req.canonical_pid, target, req.timestamp, canonical_bin_pid), mimetype='text/xml')
        if extension in ['html', 'htm']:
            template = {
                'static': STATIC,
                'target_pid': req.canonical_pid,
                'bin_pid': canonical_bin_pid,
                'properties': target,
                'target': target.items(), # FIXME use order_keys
                'date': req.timestamp
            }
            return template_response('target.html',**template)
    else: # bin
        if req.extension in ['hdr', 'adc', 'roi']:
            path = dict(hdr=hdr_path, adc=adc_path, roi=roi_path)[req.extension]
            mimetype = dict(hdr='text/plain', adc='text/csv', roi='application/octet-stream')[req.extension]
            return Response(file(path,'rb'), direct_passthrough=True, mimetype=mimetype)
        try:
            if req.product in ['blobs','blob']: # accept old url pattern
                return serve_blob_bin(req.parsed)
            if req.product=='features':
                return serve_features_bin(req.parsed)
            if req.product=='class_scores':
                return serve_class_scores_bin(req.parsed)
        except NotFound:
            abort(404)
        # gonna need targets unless heft is medium or below
        targets = []
        if req.product != 'short':
            targets = get_targets(adc, req.canonical_pid)
        # end of views
        # not a special view, handle representations of targets
        if req.extension=='csv':
            adc_cols = req.parsed[ADC_COLS].split(' ')
            lines = targets2csv(targets,adc_cols)
            return Response('\n'.join(lines)+'\n',mimetype='text/csv')
        # we'll need the header for the other representations
        hdr = parse_hdr_file(hdr_path)
        if req.extension in ['html', 'htm']:
            targets = list(targets)
            context, props = split_hdr(hdr)
            template = {
                'static': STATIC,
                'bin_pid': req.canonical_pid,
                'time_series': req.time_series,
                'context': context,
                'properties': props,
                'targets': targets,
                'target_pids': [t['pid'] for t in targets],
                'date': req.timestamp,
                'files': get_files(req.parsed,check=True) # note: ORM call!
            }
            print get_files(req.parsed)
            return template_response('bin.html', **template)
        if req.extension=='json':
            if req.product=='short':
                return Response(bin2json_short(req.canonical_pid,hdr,req.timestamp),mimetype=MIME_JSON)
            if req.product=='medium':
                return Response(bin2json_medium(req.canonical_pid,hdr,targets,req.timestamp),mimetype=MIME_JSON)
            return Response(bin2json(req.canonical_pid,hdr,targets,req.timestamp),mimetype=MIME_JSON)
        if req.extension=='xml':
            return Response(bin2xml(req.canonical_pid,hdr,targets,req.timestamp),mimetype='text/xml')
        if req.extension=='rdf':
            return Response(bin2rdf(req.canonical_pid,hdr,targets,req.timestamp),mimetype='text/xml')
        if req.extension=='zip':
            # look to see if the zipfile is resolvable
            try:
                zip_path = get_product_file(req.parsed, 'binzip')
                if os.path.exists(zip_path):
                    return Response(file(zip_path), direct_passthrough=True, mimetype='application/zip')
            except NotFound:
                pass
            except:
                raise
            buffer = BytesIO()
            bin2zip(req.parsed,req.canonical_pid,targets,hdr,req.timestamp,roi_path,buffer)
            return Response(buffer.getvalue(), mimetype='application/zip')
    return 'unimplemented'