exp_args_0 = [ '--env_id', env_name_0[i_env], '--exp_id', model_name + '_fooobj_' + str(0), '--random_seed', str(0), '--agent_alg', model_name, '--verbose', '2', '--render', '0', '--gamma', '0.99', '--n_episodes', '50', '--n_cycles', '50', '--n_rollouts', '38', '--n_test_rollouts', '38', '--n_envs', '1', '--n_batches', '40', '--batch_size', '4864', '--obj_action_type', '0123456', '--max_nb_objects', '1', '--observe_obj_grp', 'False', '--rob_policy', '01' ] config_0 = get_params(args=exp_args_0) model_0, experiment_args_0 = init(config_0, agent='object', her=True, object_Qfunc=None, backward_dyn=None, object_policy=None) env_0, memory_0, noise_0, config_0, normalizer_0, agent_id_0 = experiment_args_0 #loading the object model if ENV == 'Egg': path = './models_paper/obj/egg_rotate_7d_50ep/' elif ENV == 'Block': path = './models_paper/obj/block_rotate_7d_50ep/' elif ENV == 'Pen': path = './models_paper/obj/pen_rotate_7d_50ep/' print('loading object model for rotation') print(path) model_0.critics[0].load_state_dict(K.load(path +
model_name = 'DDPG_BD' exp_args = [ '--env_id', env_name, '--exp_id', model_name + '_fooobj_' + str(0), '--random_seed', str(0), '--agent_alg', model_name, '--verbose', '2', '--render', '0', '--gamma', '0.99', '--n_episodes', '50', '--n_cycles', '50', '--n_rollouts', '38', '--n_test_rollouts', '38', '--n_envs', '1', '--n_batches', '40', '--batch_size', '4864', '--obj_action_type', '0123456', '--max_nb_objects', '1', '--observe_obj_grp', 'False', '--rob_policy', '01' ] config = get_params(args=exp_args) model, experiment_args = init(config, agent='object', her=True, object_Qfunc=None, backward_dyn=None, object_policy=None) env, memory, noise, config, normalizer, agent_id = experiment_args #loading the object model if env_name == 'HandManipulateEggRotateMulti-v0': path = './models_paper/obj/egg_rotate_7d_50ep/' elif env_name == 'HandManipulateBlockRotateXYZMulti-v0': path = './models_paper/obj/block_rotate_7d_50ep/' elif env_name == 'HandManipulatePenRotateMulti-v0': path = './models_paper/obj/pen_rotate_7d_50ep/' print('loading object model') print(path) model.critics[0].load_state_dict(K.load(path + 'object_Qfunc.pt'))
'--n_bd_batches', '400', '--obj_action_type', '012', '--max_nb_objects', '1', '--observe_obj_grp', 'False', '--rob_policy', '01', ] config = get_params(args=exp_args) model, experiment_args = init(config, agent='object', her=True, object_Qfunc=None, backward_dyn=None, object_policy=None) env, memory, noise, config, normalizer, agent_id = experiment_args #loading the object model if exp_config['env'] == 'Push': path = './models/obj/obj_push_xyz/' elif exp_config['env'] == 'PnP': path = './models/obj/obj_pnp_xyz/' model.critics[0].load_state_dict(K.load(path + 'object_Qfunc.pt')) model.backward.load_state_dict(K.load(path + 'backward_dyn.pt')) model.actors[0].load_state_dict(K.load(path + 'object_policy.pt')) with open(path + 'normalizer.pkl', 'rb') as file: normalizer = pickle.load(file)