Ejemplo n.º 1
0
    def test_likelihoods_equal_priors(self):
        """likelihoods should equal Pr(D|H) if priors the same"""
        equal = [0.25, 0.25, 0.25, 0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        equal_answer = [1, 1, 1, 1]
        unequal_answer = [2, 1, 0.5, 0.5]
        for obs, exp in zip(likelihoods(equal, equal), equal_answer):
            self.assertFloatEqual(obs, exp)

        for obs, exp in zip(likelihoods(unequal, equal), unequal_answer):
            self.assertFloatEqual(obs, exp)
Ejemplo n.º 2
0
    def test_likelihoods_equal_evidence(self):
        """likelihoods should return vector of 1's if evidence equal for all"""
        equal = [0.25, 0.25, 0.25, 0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        equal_answer = [1, 1, 1, 1]
        unequal_answer = [2, 1, 0.5, 0.5]
        not_unity = [0.7, 0.7, 0.7, 0.7]

        for obs, exp in zip(likelihoods(equal, unequal), equal_answer):
            self.assertFloatEqual(obs, exp)

        # should be the same if evidences don't sum to 1
        for obs, exp in zip(likelihoods(not_unity, unequal), equal_answer):
            self.assertFloatEqual(obs, exp)
Ejemplo n.º 3
0
    def test_likelihoods_unequal_evidence(self):
        """likelihoods should update based on weighted sum if evidence unequal"""
        not_unity = [1, 0.5, 0.25, 0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        products = [1.4545455, 0.7272727, 0.3636364, 0.3636364]

        # if priors and evidence both unequal, likelihoods should change
        # (calculated using StarCalc)
        for obs, exp in zip(likelihoods(not_unity, unequal), products):
            self.assertFloatEqual(obs, exp)