Ejemplo n.º 1
0
def test_below_and_suff():
    fol = _fol.Context()
    fol.declare(p=(0, 3), q=(0, 3))
    # define a fragment of a lattice
    prm = Parameters()
    prm.p_vars = {'p'}
    prm.q_vars = {'q'}
    prm.p_to_q = {'p': 'q'}
    prm.q_to_p = {'q': 'p'}
    # 3
    # | |
    # 1 2
    # |
    # 0
    prm.p_leq_q = fol.add_expr(r'''
        \/ (p = 0 /\ q = 1)
        \/ (p = 0 /\ q = 3)
        \/ (p = 1 /\ q = 3)
        \/ (p = 2 /\ q = 3)
        \/ (p \in 0..3 /\ p = q)
        ''')
    ymax = fol.add_expr('p = 3')
    cover = fol.add_expr('p = 3')
    x = fol.add_expr('p = 0')
    y = fol.add_expr(r'p \in 1..3')
    yk_set = cov_enum._below_and_suff(ymax, cover, x, y, prm, fol)
    yk_set_ = fol.add_expr(r'p = 1 \/ p = 3')
    assert yk_set == yk_set_, list(fol.pick_iter(yk_set))
Ejemplo n.º 2
0
def test_pick_iter_as_bdd():
    fol = _fol.Context()
    fol.declare(x=(0, 5))
    u = fol.add_expr(r' x \in 0..1 ')
    t = list(cov_enum._pick_iter_as_bdd(u, fol))
    t_ = [fol.add_expr('x = 0'), fol.add_expr('x = 1')]
    assert t == t_, (t, t_)
Ejemplo n.º 3
0
def test_lm_tail():
    fol = _fol.Context()
    fol.declare(x=(0, 5))
    # N = 3
    lm = [
        fol.add_expr('x = 0'),  # index 1
        fol.add_expr('x = 1'),  # index 2
        fol.add_expr('x = 2')
    ]  # index 3
    k = 0
    with assert_raises(AssertionError):
        cov_enum._lm_tail(k, lm)
    k = 1
    r = cov_enum._lm_tail(k, lm)
    r_ = fol.add_expr(r'x \in 0..2')
    assert r == r_, list(fol.pick_iter(r))
    k = 2
    r = cov_enum._lm_tail(k, lm)
    r_ = fol.add_expr(r'x \in 1..2')
    assert r == r_, list(fol.pick_iter(r))
    k = 3
    r = cov_enum._lm_tail(k, lm)
    r_ = fol.add_expr('x = 2')
    assert r == r_, list(fol.pick_iter(r))
    k = 4
    with assert_raises(AssertionError):
        cov_enum._lm_tail(k, lm)
Ejemplo n.º 4
0
def test_orthotopes_iter():
    fol = _fol.Context()
    fol.declare(p=(2, 9))
    # careful with the type hint
    u = fol.add_expr('(0 <= p) /\ (p <= 10)')
    c = list(lat._orthotopes_iter(u, fol))
    assert len(c) == 11, c
Ejemplo n.º 5
0
def setup_orthotope_vars():
    fol = _fol.Context()
    fol.declare(
        x=(0, 5),
        y=(2, 14),
        px=(0, 5),
        qx=(0, 5),
        py=(2, 14),
        qy=(2, 14),
        ax=(0, 5),
        bx=(0, 5),
        ay=(2, 14),
        by=(2, 14),
    )
    xvars = ['x', 'y']
    px = dict(x=dict(a='px', b='qx'), y=dict(a='py', b='qy'))
    qx = dict(x=dict(a='ax', b='bx'), y=dict(a='ay', b='by'))
    prm = lat.Parameters()
    prm.x_vars = xvars
    prm._px = px
    prm._qx = qx
    prm.p_to_q = dict(px='ax', py='ay', qx='bx', qy='by')
    prm.p_vars = set(prm.p_to_q)
    prm.q_vars = set(prm.p_to_q.values())
    varmap = lat.parameter_varmap(px, qx)
    prm.p_leq_q = lat.subseteq(varmap, fol)
    prm.p_eq_q = lat.eq(varmap, fol)
    return fol, prm
Ejemplo n.º 6
0
def test_y_unfloor():
    fol = _fol.Context()
    fol.declare(p=(0, 3), q=(0, 3))
    # define a fragment of a lattice
    prm = Parameters()
    prm.p_vars = {'p'}
    prm.p_to_q = {'p': 'q'}
    prm.q_to_p = {'q': 'p'}
    # 2 3
    # | |
    # 0 1
    prm.p_leq_q = fol.add_expr(r'''
        \/ (p = 0 /\ q = 2)
        \/ (p = 1 /\ q = 3)
        ''')
    y = fol.add_expr(r'p \in 2..3')
    # yfloor = 0
    yfloor = fol.add_expr('p = 0')
    y_over = cov_enum._y_unfloor(yfloor, y, prm, fol)
    y_over_ = fol.add_expr('p = 2')
    assert y_over == y_over_, list(fol.pick_iter(y_over))
    # yfloor = 1
    yfloor = fol.add_expr('p = 1')
    y_over = cov_enum._y_unfloor(yfloor, y, prm, fol)
    y_over_ = fol.add_expr('p = 3')
    assert y_over == y_over_, list(fol.pick_iter(y_over))
Ejemplo n.º 7
0
def test_enumerate_mincovers_below():
    """Test the function `enumerate_mincovers_below`."""
    fol = _fol.Context()
    fol.declare(x=(0, 5))
    u = fol.add_expr(r' x \in 0..1 ')
    care = fol.true
    prm = lat.setup_aux_vars(u, care, fol)
    lat.setup_lattice(prm, fol)
    x = fol.add_expr(r' a_x = 0 /\ b_x = 2 ')
    y = fol.add_expr(r'''
        \/ (a_x = 0 /\ b_x = 1)
        \/ (a_x = 0 /\ b_x = 3)
        \/ (a_x = 0 /\ b_x = 4)
        ''')
    cover_from_max = fol.add_expr(r'''
        a_x = 0 /\ b_x = 4
        ''')
    mincovers_below = cov_enum._enumerate_mincovers_below(
        cover_from_max, x, y, prm, fol)
    mincovers_below_ = cov_enum._enumerate_mincovers_below_set_based(
        cover_from_max, x, y, prm, fol)
    assert mincovers_below == mincovers_below_, mincovers_below
    r = fol.add_expr(r'''
        \/ (a_x = 0 /\ b_x = 3)
        \/ (a_x = 0 /\ b_x = 4)
        ''')
    mincovers_below_ = set(fol.assign_from(d) for d in fol.pick_iter(r))
    assert mincovers_below == mincovers_below_, (mincovers_below,
                                                 mincovers_below_)
Ejemplo n.º 8
0
def setup_aut(xmax=15, ymax=15):
    fol = _fol.Context()
    fol.bdd.configure(reordering=True)
    # CAUTION: remember that type hints (safety)
    # needs to be added as care set
    fol.declare(x=(0, xmax), y=(0, ymax))
    x_vars = ['x', 'y']
    p_table = lat._parameter_table(
        x_vars, fol.vars, a_name='a', b_name='b')
    q_table = lat._parameter_table(
        x_vars, fol.vars, a_name='u', b_name='v')
    fol.declare(**p_table)
    fol.declare(**q_table)
    px = lat._map_vars_to_parameters(
        x_vars, a_name='a', b_name='b')
    qx = lat._map_vars_to_parameters(
        x_vars, a_name='u', b_name='v')
    varmap = lat.parameter_varmap(px, qx)
    p_to_q = lat._renaming_between_parameters(px, qx)
    prm = lat.Parameters()
    prm.x_vars = x_vars
    prm.p_vars = set(p_table)
    prm.q_vars = set(q_table)
    prm.p_to_q = p_to_q
    prm._px = px
    prm._qx = qx
    prm._varmap = varmap
    return fol, prm
Ejemplo n.º 9
0
def test_branching():
    aut = _fol.Context()
    aut.bdd.configure(reordering=True)
    # aut.bdd = _bdd.BDD(memory_estimate=2 * _bdd.GB)
    # aut.bdd.configure(
    #     max_memory=2 * _bdd.GB,
    #     max_cache_hard=2**25)
    aut.declare(x=(0, 10), y=(0, 25), z=(0, 25))
    s = (
        '( '
        '(z = 1  /\  y <= 0)  \/ '
        '(x = 0  /\  z = 1)  \/ '
        '(y >= 1  /\  x <= 0)  \/ '
        '(y >= 1  /\  z <= 0)  \/ '
        '(x >= 1  /\  z <= 0)  \/ '
        '(x >= 1  /\  y <= 0) '
        ') ')
    f = aut.add_expr(s)
    s = (
        '0 <= x  /\  x <= 2  /\ '
        '0 <= y  /\  y <= 1  /\ '
        '0 <= z  /\  z <= 1 '
        )
    care_set = aut.add_expr(s)
    # care_set = aut.true
    cover = cov.minimize(f, care_set, aut)
    s = cov.dumps_cover(cover, f, care_set, aut)
    log.info(s)
Ejemplo n.º 10
0
def test_max_transpose():
    fol = _fol.Context()
    # `p'` serves as `u`
    dvars = {'p': (0, 4), 'q': (0, 4), "p_cp": (0, 4)}
    fol.declare(**dvars)
    s = '(p = 2) \/ (p = 4)'
    p_is_prime = fol.add_expr(s)
    s = '(p = 1) \/ (p = 3)'
    p_is_signature = fol.add_expr(s)
    p_to_q = {'p': 'q'}
    # we use intervals `0..p` as literals
    px = dict(p=dict(a='0', b='p'))
    qx = dict(p=dict(a='0', b='q'))
    u_leq_p = fol.add_expr("p_cp <= p")
    p_leq_u = fol.add_expr("p <= p_cp")
    p_leq_q = fol.add_expr("p <= q")
    p_eq_q = fol.add_expr("p = q")  # /\ (0 = 0)
    prm = lat.Parameters()
    prm._px = px
    prm._qx = qx
    prm.u_leq_p = u_leq_p
    prm.p_leq_u = p_leq_u
    prm.p_leq_q = p_leq_q
    prm.p_eq_q = p_eq_q
    prm.p_to_q = p_to_q
    prm.p_vars = {'p'}
    prm.q_vars = {'q'}
    prm.u_vars = {'p_cp'}
    prm.p_to_u = {'p': 'p_cp'}
    bab = cov._BranchAndBound(prm, fol)
    max_tau_x = cov._max_transpose(
        p_is_signature, p_is_prime, bab, fol)
    s = 'p = 3'
    max_tau_x_ = fol.add_expr(s)
    assert max_tau_x == max_tau_x_
Ejemplo n.º 11
0
def test_transpose():
    fol = _fol.Context()
    dvars = {'p': (0, 4), 'q': (0, 4), "p_cp": (0, 4)}
    fol.declare(**dvars)
    s = '(p = 1) \/ (p = 2) \/ (p = 4)'
    p_is_prime = fol.add_expr(s)
    s = '(p = 1) \/ (p = 3)'
    p_is_signature = fol.add_expr(s)
    p_to_q = {'p': 'q'}
    p_leq_q = fol.add_expr("p <= q")
    u_leq_p = fol.add_expr("p_cp <= p")
    p_leq_u = fol.add_expr("p <= p_cp")
    prm = lat.Parameters()
    prm.u_leq_p = u_leq_p
    prm.p_leq_u = p_leq_u
    prm.p_leq_q = p_leq_q
    prm.p_to_q = p_to_q
    prm.p_vars = {'p'}
    prm.q_vars = {'q'}
    prm.u_vars = {'p_cp'}
    prm.p_to_u = {'p': 'p_cp'}
    bab = cov._BranchAndBound(prm, fol)
    tau = cov._floor(
        p_is_signature, p_is_prime, bab, fol)
    s = 'p = 1 \/ p = 3'
    tau_ = fol.add_expr(s)
    assert tau == tau_
Ejemplo n.º 12
0
def test_needs_unfloors():
    """Floors shrinks both primes to one smaller implicant.

    The returned cover is a minimal cover, so the
    assertion `_covers` in the function `cover.minimize` passes.
    However, the returned cover is not made of primes from
    the set `y` computed by calling `prime_implicants`.

    Finding the primes takes into account the care set.
    The resulting covering problem is such that shrinking happens.
    Therefore, unfloors is necessary in this problem.
    """
    fol = _fol.Context()
    fol.declare(x=(0, 1), y=(0, 1))
    f = fol.add_expr('x = 0 /\ y = 0')
    care = fol.add_expr('''
        \/ (x = 0 /\ y = 0)
        \/ (x = 1 /\ y = 1)
        ''')
    cover = cov.minimize(f, care, fol)
    implicants = list(fol.pick_iter(cover))
    assert len(implicants) == 1, implicants
    (d,) = implicants
    d_1 = dict(a_x=0, b_x=1, a_y=0, b_y=0)
    d_2 = dict(a_x=0, b_x=0, a_y=0, b_y=1)
    assert d == d_1 or d == d_2, d
Ejemplo n.º 13
0
def test_cyclic_core_recursion():
    """Two cyclic cores, in orthogonal subspaces."""
    fol = _fol.Context()
    fol.declare(
        x=(0, 1), y=(0, 1), z=(0, 1),
        u=(0, 1), v=(0, 1), w=(0, 1))
    s = r'''
        (
            \/ (z = 1  /\  y = 0)
            \/ (x = 0  /\  z = 1)
            \/ (y = 1  /\  x = 0)
            \/ (y = 1  /\  z = 0)
            \/ (x = 1  /\  z = 0)
            \/ (x = 1  /\  y = 0)
        ) \/
        (
            \/ (w = 1  /\  v = 0)
            \/ (u = 0  /\  w = 1)
            \/ (v = 1  /\  u = 0)
            \/ (v = 1  /\  w = 0)
            \/ (u = 1  /\  w = 0)
            \/ (u = 1  /\  v = 0)
        )
        '''
    f = fol.add_expr(s)
    care_set = fol.true
    cover = cov.minimize(f, care_set, fol)
    n = fol.count(cover)
    assert n == 6, n
Ejemplo n.º 14
0
def test_cyclic_core_recursion_2():
    """Two cyclic cores, in orthogonal subspaces."""
    fol = _fol.Context()
    fol.declare(x=(0, 1), y=(0, 1), z=(0, 1), u=(0, 1), v=(0, 1), w=(0, 1))
    s = r'''
        (
            \/ (z = 1  /\  y = 0)
            \/ (x = 0  /\  z = 1)
            \/ (y = 1  /\  x = 0)
            \/ (y = 1  /\  z = 0)
            \/ (x = 1  /\  z = 0)
            \/ (x = 1  /\  y = 0)
        ) \/
        (
            \/ (w = 1  /\  v = 0)
            \/ (u = 0  /\  w = 1)
            \/ (v = 1  /\  u = 0)
            \/ (v = 1  /\  w = 0)
            \/ (u = 1  /\  w = 0)
            \/ (u = 1  /\  v = 0)
        )
        '''
    f = fol.add_expr(s)
    care_set = fol.true
    mincovers = cov_enum.minimize(f, care_set, fol)
    n = len(mincovers)
    assert n == 4, (n, mincovers)
    for cover in mincovers:
        n = fol.count(cover)
        primes = list(fol.pick_iter(cover))
        assert n == 6, (n, primes)
Ejemplo n.º 15
0
def test_cyclic_core_recursion():
    """One cyclic core."""
    fol = _fol.Context()
    fol.declare(x=(0, 1), y=(0, 1), z=(0, 1))
    s = r'''
        (
            \/ (z = 1  /\  y = 0)
            \/ (x = 0  /\  z = 1)
            \/ (y = 1  /\  x = 0)
            \/ (y = 1  /\  z = 0)
            \/ (x = 1  /\  z = 0)
            \/ (x = 1  /\  y = 0)
        )
        '''
    f = fol.add_expr(s)
    care = fol.true
    # setup variables and lattice
    prm = lat.setup_aux_vars(f, care, fol)
    lat.setup_lattice(prm, fol)
    # covering problem
    fcare = f | ~care
    x = lat.embed_as_implicants(f, prm, fol)
    y = lat.prime_implicants(fcare, prm, fol)
    # enumerative check
    enumerated_covers(x, y, prm, fol)
    # symbolically minimize
    mincovers = cov_enum.minimize(f, care, fol)
    n = len(mincovers)
    assert n == 2, (n, mincovers)
    for cover in mincovers:
        n = fol.count(cover)
        primes = list(fol.pick_iter(cover))
        assert n == 3, (n, primes)
Ejemplo n.º 16
0
def replace_with_bdd():
    fol = _fol.Context()
    fol.declare(x='bool', y='bool')
    u = fol.add_expr('x => y')
    subs = {'x': fol.bdd.true}
    u = fol.replace_with_bdd(u, subs)
    u_ = fol.add_expr('y')
    assert u == u_, (u, u_)
Ejemplo n.º 17
0
def test_declare():
    # Boolean-valued variable
    fol = _fol.Context()
    bdd = fol.bdd
    fol.declare(x='bool')
    assert 'x' in fol.vars, fol.vars
    dx = fol.vars['x']
    assert 'type' in dx, dx
    type_x = dx['type']
    assert type_x == 'bool', type_x
    assert 'x' in bdd.vars
    assert 'x_0' not in bdd.vars
    # integer-valued variable
    fol = _fol.Context()
    bdd = fol.bdd
    fol.declare(y=(0, 2))
    assert 'y' in fol.vars, fol.vars
    dy = fol.vars['y']
    assert 'type' in dy, dy
    type_dy = dy['type']
    assert type_dy == 'int', type_dy
    # regression regarding bit naming convention
    assert 'y_0' in bdd.vars
    assert 'y_1' in bdd.vars
    assert 'y_2' not in bdd.vars
    assert 'y' not in bdd.vars
    # primed vars
    fol = _fol.Context()
    bdd = fol.bdd
    d = {"y'": (0, 1)}
    fol.declare(**d)
    assert "y'" in fol.vars, fol.vars
    assert "y_0'" in bdd.vars, bdd.vars
    assert "y'_0" not in bdd.vars, bdd.vars
    # adding same vars twice
    fol = _fol.Context()
    fol.declare(x='bool')
    fol.declare(x='bool')
    # mismatch with existing var
    with nt.assert_raises(ValueError):
        fol.declare(x=(1, 5))
    # mixed new and existing
    fol.declare(x='bool', y=(0, 5))
    with nt.assert_raises(ValueError):
        fol.declare(x='bool', y=(3, 15))
Ejemplo n.º 18
0
def test_cyclic_core_with_care_set():
    aut = _fol.Context()
    aut.declare(x=(0, 17))
    # cover = {True}
    s = '(x < 15)'
    f = aut.add_expr(s)
    s = '(x < 15)'
    care_set = aut.add_expr(s)
    cov.cyclic_core(f, care_set, aut)
Ejemplo n.º 19
0
def test_add_expr():
    fol = _fol.Context()
    bdd = fol.bdd
    u = fol.add_expr('False')
    assert u == bdd.false, bdd.to_expr(u)
    fol.declare(x=(0, 100), y=(5, 23))
    u = fol.add_expr('x < y + 5')
    v = fol.add_expr('x - 5 < y')
    assert u == v, (u, v)
Ejemplo n.º 20
0
def test_cyclic_core_with_care_set():
    fol = _fol.Context()
    fol.declare(x=(0, 17))
    s = '(x < 15)'
    f = fol.add_expr(s)
    care_set = fol.true
    mincovers = cov_enum.minimize(f, care_set, fol)
    mincovers_ = {fol.add_expr('a_x = 0 /\ b_x = 14')}
    assert mincovers == mincovers_, list(fol.pick_iter(mincovers))
Ejemplo n.º 21
0
def test_cyclic_core_fixpoint_recursive():
    fol = _fol.Context()
    p_vars = dict(p=(0, 3))
    q_vars = dict(q=(0, 3))
    u_vars = dict(p_cp=(0, 3))
    fol.declare(**p_vars)
    fol.declare(**q_vars)
    fol.declare(**u_vars)
    p_eq_q = fol.to_bdd(r'p \in 0..3 /\ p = q')
    # 3
    # | |
    # 1 2
    # | |
    # 0
    leq = r'''
    # (* layer 1 *)
    \/ (p = 0  /\  q = 1)
    \/ (p = 0  /\  q = 2)
    # (* layer 2 *)
    \/ (p = 1  /\  q = 3)
    \/ (p = 2  /\  q = 3)
    # transitivity
    \/ (p = 0 /\ q = 3)
    # equality
    \/ (p = q /\ p \in 0..3)
    '''
    p_leq_q = fol.to_bdd(leq)
    u_leq_p = fol.to_bdd(leq.replace('p', 'p_cp').replace('q', 'p'))
    p_leq_u = fol.to_bdd(leq.replace('q', 'p_cp'))
    # bundle
    prm = Parameters()
    prm.p_vars = set(p_vars)
    prm.q_vars = set(q_vars)
    prm.u_vars = set(u_vars)
    #
    prm.p_to_q = dict(p='q')
    prm.q_to_p = dict(q='p')
    prm.p_to_u = dict(p='p_cp')
    #
    prm.u_leq_p = u_leq_p
    prm.p_leq_u = p_leq_u
    prm.p_leq_q = p_leq_q
    prm.p_eq_q = p_eq_q
    #
    x = fol.add_expr('p = 0')
    y = fol.add_expr(r'p \in 1..2')
    #
    path_cost = 0.0
    bab = cov._BranchAndBound(prm, fol)
    bab.upper_bound = cov._upper_bound(x, y, prm.p_leq_q, prm.p_to_q, fol)
    path_cost = 0.0
    mincovers = cov_enum._cyclic_core_fixpoint_recursive(
        x, y, path_cost, bab, fol)
    assert len(mincovers) == 2, mincovers
    mincovers_ = {fol.add_expr('p = 1'), fol.add_expr('p = 2')}
    assert mincovers == mincovers_, list(fol.pick_iter(mincovers))
Ejemplo n.º 22
0
def test_add_to_visited():
    c = _fol.Context()
    c.declare(x='bool', y=(0, 10))
    bdd = c.bdd
    values = dict(x=True, y=5)
    visited = bdd.false
    new_visited = enum._add_to_visited(values, visited, c)
    s = 'x /\ (y = 5)'
    u = c.add_expr(s)
    assert new_visited == u
Ejemplo n.º 23
0
def test_apply():
    fol = _fol.Context()
    bdd = fol.bdd
    fol.declare(x='bool')
    u = fol.add_expr('x')
    v = fol.add_expr(' ~ x')
    w = fol.apply('and', u, v)
    assert w == bdd.false
    w = fol.apply('or', u, v)
    assert w == bdd.true
Ejemplo n.º 24
0
def test_f_implies_care():
    fol = _fol.Context()
    fol.declare(x=(-4, 5))
    f = fol.add_expr('0 < x  /\  x < 4')
    care = fol.add_expr('-2 <= x  /\  x <= 4')
    r = cov._f_implies_care(f, care, fol)
    assert r is True, r
    care = fol.add_expr('-2 <= x  /\  x <= 2')
    r = cov._f_implies_care(f, care, fol)
    assert r is False, r
Ejemplo n.º 25
0
def test_enumerate_mincovers_unfloor():
    fol = _fol.Context()
    fol.declare(p=(0, 4), q=(0, 4))
    # define a fragment of a lattice
    prm = Parameters()
    prm.p_vars = {'p'}
    prm.p_to_q = {'p': 'q'}
    prm.q_to_p = {'q': 'p'}
    # 2 3
    # | |
    # 0 1
    prm.p_leq_q = fol.add_expr(r'''
        \/ (p = 0 /\ q = 2)
        \/ (p = 1 /\ q = 3)
        ''')
    # {0..1} |-> {2..3}
    y = fol.add_expr(r'p \in 2..3')
    cover_from_floors = fol.add_expr(r'p \in 0..1')
    mincovers = cov_enum._enumerate_mincovers_unfloor(cover_from_floors, y,
                                                      prm, fol)
    assert len(mincovers) == 1, mincovers
    assert y in mincovers, (mincovers, y)
    # non-injective case
    # 2 2 3
    # | | |
    # 0 1 1
    prm.p_leq_q = fol.add_expr(r'''
        \/ (p = 0 /\ q = 2)
        \/ (p = 1 /\ q = 2)
        \/ (p = 1 /\ q = 3)
        ''')
    y = fol.add_expr(r'p \in 2..3')
    cover_from_floors = fol.add_expr(r'p \in 0..1')
    with assert_raises(AssertionError):
        # The assertion error is raised because the cover's cardinality
        # is reduced by the mapping, so the cardinality of the
        # partial cover is smaller than expected (`assert k == k_` within
        # the function `_enumerate_mincovers_unfloor`).
        mincovers = cov_enum._enumerate_mincovers_unfloor(
            cover_from_floors, y, prm, fol)
    # {0..1} |-> {2..3, {2, 4}}
    prm.p_leq_q = fol.add_expr(r'''
        \/ (p = 0 /\ q = 2)
        \/ (p = 1 /\ q = 3)
        \/ (p = 1 /\ q = 4)
        ''')
    y = fol.add_expr(r'p \in 2..4')
    cover_from_floors = fol.add_expr(r'p \in 0..1')
    mincovers = cov_enum._enumerate_mincovers_unfloor(cover_from_floors, y,
                                                      prm, fol)
    assert len(mincovers) == 2, mincovers
    cover = fol.add_expr(r'p \in 2..3')
    assert cover in mincovers, (mincovers, cover)
    cover = fol.add_expr(r'p = 2 \/ p = 4')
    assert cover in mincovers, (mincovers, cover)
Ejemplo n.º 26
0
def test_pick():
    fol = _fol.Context()
    fol.declare(x='bool', y=(0, 2))
    u = fol.add_expr('x')
    p = fol.pick(u, care_vars=['x'])
    for i in range(10):
        q = fol.pick(u, care_vars=['x'])
        assert p == q, (p, q)
    u = fol.add_expr('False')
    p = fol.pick(u, care_vars=['x'])
    assert p is None, p
Ejemplo n.º 27
0
def test_partial_order():
    fol = _fol.Context()
    fol.declare(x=(0, 4), w=(0, 4), w_cp=(0, 4), t=(0, 4), t_cp=(0, 4))
    px = dict(x=dict(a='w', b='t'))
    u_leq_p, p_leq_u = lat.partial_order(px, fol)
    s = '(w <= w_cp) /\ (t_cp <= t)'
    u_leq_p_ = fol.add_expr(s)
    assert u_leq_p == u_leq_p_
    s = '(w_cp <= w) /\ (t <= t_cp)'
    p_leq_u_ = fol.add_expr(s)
    assert p_leq_u == p_leq_u_
Ejemplo n.º 28
0
def test_dumps_cover():
    fol = _fol.Context()
    fol.declare(x=(0, 4), y=(-5, 9))
    # care = TRUE
    s = '2 <= x  /\  x <= 4'
    u = fol.add_expr(s)
    care = fol.true
    cover = cov.minimize(u, care, fol)
    s = cov.dumps_cover(cover, u, care, fol)
    s_ = (
        '(* `f` depends on:  x *)\n'
        '(* `care` depends on:   *)\n'
        '(* The minimal cover is: *)\n'
        '(x \in 2 .. 4)')
    assert s == s_, (s, s_)
    # care doesn't imply type hints
    s = cov.dumps_cover(
        cover, u, care, fol,
        show_dom=True)
    s_ = (
        '(* `f` depends on:  x *)\n'
        '(* `care` depends on:   *)\n'
        '(* The minimal cover is: *)\n'
        '(x \in 2 .. 4)')
    assert s == s_, (s, s_)
    # with limits
    s = cov.dumps_cover(
        cover, u, care, fol,
        show_dom=True,
        show_limits=True)
    s_ = (
        '(* `f` depends on:  x *)\n'
        '(* `care` depends on:   *)\n'
        '(* The minimal cover is: *)\n'
        ' /\ x \in 0 .. 7\n'
        ' /\ (x \in 2 .. 4)')
    assert s == s_, (s, s_)
    # care = type hints
    care = tyh._conjoin_type_hints(['x', 'y'], fol)
    cover = cov.minimize(u, care, fol)
    s = cov.dumps_cover(
        cover, u, care, fol,
        show_dom=True)
    s_ = (
        '(* `f` depends on:  x *)\n'
        '(* `care` depends on:  x, y *)\n'
        '(* The minimal cover is: *)\n'
        ' /\ x \in 0 .. 4\n'
        ' /\ y \in -5 .. 9\n'
        ' /\ (x \in 2 .. 4)\n'
        ' /\ care expression')
    assert s == s_, (s, s_)
Ejemplo n.º 29
0
def test_care_implies_type_hints():
    fol = _fol.Context()
    fol.declare(x=(-4, 5), y=(-7, 15))
    f = fol.add_expr('0 < x  /\  x < 4')
    care = fol.add_expr('-2 <= y  /\  y <= 4')
    r = cov._care_implies_type_hints(f, care, fol)
    assert r is False, r
    care = fol.add_expr('1 <= x  /\  x <= 6  /\ ' '-2 <= y  /\  y <= 4')
    r = cov._care_implies_type_hints(f, care, fol)
    assert r is False, r
    care = fol.add_expr('1 <= x  /\  x <= 5  /\ ' '-2 <= y  /\  y <= 4')
    r = cov._care_implies_type_hints(f, care, fol)
    assert r is True, r
Ejemplo n.º 30
0
def test_assert_uniform_cardinality():
    fol = _fol.Context()
    fol.declare(p=(0, 3))
    bdds = {
        fol.add_expr(r'p \in 0..1'),
        fol.add_expr(r'p \in 2..3'),
        fol.add_expr(r'p = 0 \/ p = 3')
    }
    cov_enum._assert_uniform_cardinality(bdds, fol)
    # not of uniform cardinality
    bdds = {fol.add_expr('p = 0'), fol.add_expr(r'p \in 2..3')}
    with assert_raises(AssertionError):
        cov_enum._assert_uniform_cardinality(bdds, fol)