Ejemplo n.º 1
0
def histogram_max_abort_gap_before_OML(fills):
    max_ag = {1: [], 2: []}

    for nbr in fills:
        for beam in (1, 2):
            fill = Fill(nbr, beam=beam)
            OML_start = fill.OML_period()[0]
            max_ag[beam].append(fill.abort_gap().y[:OML_start].max())
    bins = np.arange(0, 2e10, 2e9)
    fig, ax = plt.subplots()
    ax.hist([max_ag[1], max_ag[2]], bins=bins, label=["Beam 1", "Beam 2"])
    ax.legend(loc="upper right")
    ax.set_ylabel("Fill count")
    ax.set_xlabel("Abort gap intensity [$ 10^9 $]")
    ax.xaxis.set_major_formatter(
        FuncFormatter(lambda x, pos: "{0:.1f}".format(x / 1e9)))
    plt.title("Max abort gap intensity before start of ramp")
    plt.show()
Ejemplo n.º 2
0
def comp_blm_ir3_vs_abort_gap(file):
    fills = fills_from_file(file, "OML")
    abort_gap = []
    average_loss = []
    max_loss = []
    for nbr in fills:
        fill = Fill(nbr, False)
        fill.fetch()
        smin, smax = fill.OML_period()

        # Only looking until t_co instead -- will not affect max
        smax = fill.crossover_point()['i']

        tmax = fill.blm_ir3().x[smax]
        tmin = fill.blm_ir3().x[smin]

        # tmax = find_crossover_point(fill)['t']

        ag_average = moving_average(fill.abort_gap().y, 5)
        agmin = fill.abort_gap().index_for_time(tmin)
        agmax = fill.abort_gap().index_for_time(tmax)

        ssubset = fill.blm_ir3().y[smin:smax]

        average_loss.append(np.average(ssubset))
        max_loss.append(max(ssubset))
        abort_gap.append(ag_average[agmin] - ag_average[agmax])

    fig = plt.figure()
    ax1 = fig.add_subplot(121)
    ax2 = fig.add_subplot(122, sharey=ax1)

    # fig1, ax1 = plt.subplots()
    ax1.set_xlabel("Average BLM")
    ax1.set_ylabel("∆ abort gap intensity")
    ax1.scatter(average_loss, abort_gap, color='b', label='average')
    ax1.set_xlim([0, 1.1 * max(average_loss)])
    ax1.set_ylim([0, 1.1 * max(abort_gap)])

    xval = [0, 1]
    slope, intercept, r_value, p_value, std_err = stats.linregress(
        average_loss, abort_gap)
    print("Average fit")
    print(
        "\tk  ={:>10.3E}\n\tm  ={:>10.3E}\n\tr  ={:>10.7f}\n\tp  ={:>10.3E}\n\te^2={:>10.3E}"
        .format(slope, intercept, r_value, p_value, std_err))
    yfit = [slope * x + intercept for x in xval]
    ax1.plot(xval, yfit, color='gray')

    ax1.legend(loc="lower right")

    # fig2, ax2 = plt.subplots()
    ax2.set_xlabel("Max BLM")
    ax2.scatter(max_loss, abort_gap, color='r', label='max')
    ax2.set_xlim([0, 1.1 * max(max_loss)])
    ax2.legend(loc="lower right")

    slope, intercept, r_value, p_value, std_err = stats.linregress(
        max_loss, abort_gap)
    print("Max fit")
    print(
        "\tk  ={:>10.3E}\n\tm  ={:>10.3E}\n\tr  ={:>10.7f}\n\tp  ={:>10.3E}\n\te^2={:>10.3E}"
        .format(slope, intercept, r_value, p_value, std_err))
    yfit = [slope * x + intercept for x in xval]
    ax2.plot(xval, yfit, color='gray')

    fig.suptitle(
        "Correlation between abort gap intensity and BLM signal for TCP in IR3"
    )
    plt.show()