Ejemplo n.º 1
0
class ExpConfig(Config):
    # dataset configuration
    dataset = "machine-1-1"
    x_dim = get_data_dim(dataset)

    # model architecture configuration
    use_connected_z_q = True
    use_connected_z_p = True

    # model parameters
    z_dim = 3
    rnn_cell = 'GRU'  # 'GRU', 'LSTM' or 'Basic'
    rnn_num_hidden = 500
    window_length = 100
    dense_dim = 500
    posterior_flow_type = 'nf'  # 'nf' or None
    nf_layers = 20  # for nf
    max_epoch = 10
    train_start = 0
    max_train_size = None  # `None` means full train set
    batch_size = 50
    l2_reg = 0.0001
    initial_lr = 0.001
    lr_anneal_factor = 0.5
    lr_anneal_epoch_freq = 40
    lr_anneal_step_freq = 400
    std_epsilon = 1e-4

    # evaluation parameters
    test_n_z = 1024
    test_batch_size = 50
    test_start = 0
    max_test_size = None  # `None` means full test set

    valid_step_freq = 100
    gradient_clip_norm = 10.

    early_stop = True  # whether to apply early stop method

    # pot parameters
    # recommend values for `level`:
    # SMAP: 0.07
    # MSL: 0.01
    # SMD group 1: 0.0050
    # SMD group 2: 0.0075
    # SMD group 3: 0.0001
    level = 0.01

    # outputs config
    save_z = False  # whether to save sampled z in hidden space
    get_score_on_dim = False  # whether to get score on dim. If `True`, the score will be a 2-dim ndarray
    save_dir = 'model'
    restore_dir = None  # If not None, restore variables from this dir
    result_dir = 'result'  # Where to save the result file
    train_score_filename = 'train_score.pkl'
    test_score_filename = 'test_score.pkl'
Ejemplo n.º 2
0
                var_dict = get_variables_as_dict(model_vs)
                saver = VariableSaver(var_dict, config.save_dir)
                saver.save()
            print('=' * 30 + 'result' + '=' * 30)
            pprint(best_valid_metrics)


if __name__ == '__main__':

    # get config obj
    config = ExpConfig()

    # parse the arguments
    arg_parser = ArgumentParser()
    register_config_arguments(config, arg_parser)
    arg_parser.parse_args(sys.argv[1:])
    config.x_dim = get_data_dim(config.dataset)

    print_with_title('Configurations', pformat(config.to_dict()), after='\n')

    # open the result object and prepare for result directories if specified
    results = MLResults(config.result_dir)
    results.save_config(config)  # save experiment settings for review
    results.make_dirs(config.save_dir, exist_ok=True)
    with warnings.catch_warnings():
        # suppress DeprecationWarning from NumPy caused by codes in TensorFlow-Probability
        warnings.filterwarnings("ignore",
                                category=DeprecationWarning,
                                module='numpy')
        main()