Ejemplo n.º 1
0
 def test_fused_scale_tril_fw_bw_job(
     x: oft.Numpy.Placeholder(shape, dtype=flow_type)
 ):
     with flow.scope.placement(device, "0:0"):
         x_var = flow.get_variable(
             name="xv",
             shape=(1,),
             dtype=flow.float,
             initializer=flow.zeros_initializer(),
         )
         x += flow.cast(x_var, dtype=flow_type)
         if type_name == "float16":
             out = flow.cast(
                 flow.math.fused_scale_tril(
                     flow.cast(x, flow.float16), diagonal, scale=scale
                 ),
                 flow.float,
             )
         else:
             out = flow.math.fused_scale_tril(x, diagonal, scale=scale)
         flow.optimizer.SGD(
             flow.optimizer.PiecewiseConstantScheduler([], [0.0001]), momentum=0
         ).minimize(out)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(out, test_global_storage.Setter("out"))
         flow.watch_diff(out, test_global_storage.Setter("out_diff"))
         return out
Ejemplo n.º 2
0
 def SoftmaxJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x",
             shape=x_shape,
             dtype=dtype,
             initializer=flow.random_uniform_initializer(minval=-1.0,
                                                         maxval=1.0),
             trainable=True,
         )
         x1 = x
         x = flow.identity(x)
         if data_type == "float16":
             loss = flow.cast(
                 flow.nn.softmax(flow.cast(x, dtype=flow.float16),
                                 axis=axis),
                 dtype=flow.float,
             )
         else:
             loss = flow.nn.softmax(x, axis=axis)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         total_loss = loss * x1
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(total_loss)
         return loss
 def SparseSoftmaxCrossEntropyWithLogitsJob(labels: oft.Numpy.Placeholder(
     (batch_size, ), dtype=type_name_to_flow_type[label_type])):
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x",
             shape=(batch_size, num_classes),
             dtype=type_name_to_flow_type[data_type],
             initializer=flow.random_uniform_initializer(minval=-10,
                                                         maxval=10),
             trainable=True,
         )
     with flow.scope.placement(device_type, "0:0-3"):
         labels = flow.parallel_cast(labels,
                                     distribute=flow.distribute.broadcast())
         logits = flow.parallel_cast(
             x, distribute=flow.distribute.split(len(x.shape) - 1))
         loss = flow.nn.distributed_sparse_softmax_cross_entropy_with_logits(
             labels, logits)
         loss = flow.math.square(loss)
     with flow.scope.placement(device_type, "0:0"):
         loss = flow.identity(loss)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 4
0
 def test_masked_fill_fw_bw_job(
         x: oft.Numpy.Placeholder(x_shape, dtype=flow_type),
         mask: oft.Numpy.Placeholder(mask_shape, dtype=flow_type),
 ):
     with flow.scope.placement(device, "0:0"):
         y = flow.get_variable(
             name="vx",
             shape=(1, ),
             dtype=flow.float,
             initializer=flow.zeros_initializer(),
         )
         x += flow.cast(y, flow_type)
         mask = flow.cast(mask, dtype=flow.int8)
         if type_name == "float16":
             out = flow.cast(
                 flow.masked_fill(flow.cast(x, flow.float16), mask, value),
                 flow.float,
             )
         else:
             out = flow.masked_fill(x, mask, value)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(out)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(out, test_global_storage.Setter("out"))
         flow.watch_diff(out, test_global_storage.Setter("out_diff"))
         return out
Ejemplo n.º 5
0
 def TestMultiInputJob():
     with flow.scope.placement("gpu", "0:0"):
         x1 = flow.get_variable(
             "x1",
             shape=shape,
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=-10, maxval=10),
             trainable=True,
         )
         x2 = flow.get_variable(
             "x2",
             shape=shape,
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=-10, maxval=10),
             trainable=True,
         )
         loss = TestMultiInput(x1, x2)
         flow.optimizer.SGD(
             flow.optimizer.PiecewiseConstantScheduler([], [0.0001]), momentum=0
         ).minimize(loss)
         flow.watch(x1, test_global_storage.Setter("x1"))
         flow.watch_diff(x1, test_global_storage.Setter("x1_diff"))
         flow.watch(x2, test_global_storage.Setter("x2"))
         flow.watch_diff(x2, test_global_storage.Setter("x2_diff"))
         return loss
Ejemplo n.º 6
0
 def UpsampleJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "input",
             shape=input_shape,
             dtype=type_name_to_flow_type[dtype],
             initializer=flow.random_uniform_initializer(minval=2,
                                                         maxval=5),
             trainable=True,
         )
         loss = flow.layers.upsample_2d(
             x,
             size=size,
             data_format=data_format,
             interpolation=interpolation,
             align_corners=align_corners,
         )
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 7
0
 def DropoutJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x",
             shape=x_shape,
             dtype=dtype,
             initializer=flow.random_uniform_initializer(minval=-1,
                                                         maxval=1),
             trainable=True,
         )
         if data_type == "float16":
             x = flow.cast(flow.cast(x, flow.float16), dtype)
             of_out = flow.cast(
                 flow.nn.dropout(flow.cast(x, flow.float16),
                                 rate=rate,
                                 name="dropout"),
                 dtype,
             )
         else:
             of_out = flow.nn.dropout(x, rate=rate, name="dropout")
         loss = flow.math.square(of_out)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(of_out, test_global_storage.Setter("out"))
         flow.watch_diff(of_out, test_global_storage.Setter("out_diff"))
         return loss
Ejemplo n.º 8
0
 def PartialFcJob(labels: oft.Numpy.Placeholder(
     (batch_size, ), dtype=type_name_to_flow_type[label_type])):
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x-weight",
             shape=(num_classes, 128),
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=-10,
                                                         maxval=10),
             trainable=True,
         )
     with flow.scope.placement(device_type, "0:0-3"):
         lebels_distribute = flow.distribute.broadcast()
         weight_distribute = flow.distribute.split(0)
         (
             maped_label,
             sampled_label,
             sampled_weight,
         ) = flow.distributed_partial_fc_sample(
             weight=x.with_distribute(weight_distribute),
             label=labels.with_distribute(lebels_distribute),
             num_sample=num_sample,
         )
     with flow.scope.placement(device_type, "0:0"):
         sampled_weight = flow.identity(sampled_weight)
         loss = flow.math.square(sampled_weight)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch_diff(sampled_weight,
                         test_global_storage.Setter("sampled_weight_diff"))
     return (x, maped_label, sampled_label, sampled_weight)
Ejemplo n.º 9
0
 def test_job(x: oft.Numpy.Placeholder(input_shape, dtype=flow.float32)):
     v = flow.get_variable(
         name="v",
         shape=(1, ),
         dtype=flow.float32,
         initializer=flow.zeros_initializer(),
     )
     x = x + v
     x1 = flow.identity(x)
     x2 = flow.identity(x)
     flow.watch_diff(x1, test_global_storage.Setter("x1_diff"))
     flow.watch_diff(x2, test_global_storage.Setter("x2_diff"))
     x1 = flow.cast(x1, data_type)
     x2 = flow.cast(x2, data_type)
     y1 = flow.layers.batch_normalization_relu(x1, axis=axis, name="BN1")
     y2 = flow.math.relu(
         flow.layers.batch_normalization(x2, axis=axis, name="BN2"))
     y1 = flow.cast(y1, flow.float32)
     y2 = flow.cast(y2, flow.float32)
     flow.watch(y1, test_global_storage.Setter("y1"))
     flow.watch(y2, test_global_storage.Setter("y2"))
     y1 = flow.where(flow.math.greater(y2, v), y1, v)
     y2 = flow.where(flow.math.greater(y1, v), y2, v)
     loss = y1 + y2
     flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler([],
                                                                  [0.001]),
                        momentum=0).minimize(flow.math.reduce_sum(loss))
     return loss
Ejemplo n.º 10
0
 def Matmul(
     x: tp.Numpy.Placeholder((4, 4), dtype=flow.float32),
     y: tp.Numpy.Placeholder((4, 4), dtype=flow.float32),
 ) -> tp.Numpy:
     s = flow.matmul(x, y)
     flow.watch(s, Watch)
     z = flow.matmul(s, x)
     return z
Ejemplo n.º 11
0
 def FlowJob(
     value: oft.Numpy.Placeholder(x_shape), bias: oft.Numpy.Placeholder(bias_shape)
 ):
     with flow.scope.placement(device_type, "0:0"):
         value += flow.get_variable(
             name="v1",
             shape=(1,),
             dtype=flow.float,
             initializer=flow.zeros_initializer(),
         )
         bias += flow.get_variable(
             name="v2",
             shape=(1,),
             dtype=flow.float,
             initializer=flow.zeros_initializer(),
         )
         x1 = flow.identity(value)
         x2 = flow.identity(value)
         bias1 = flow.identity(bias)
         bias2 = flow.identity(bias)
         flow.watch_diff(x1, test_global_storage.Setter("x1_diff"))
         flow.watch_diff(x2, test_global_storage.Setter("x2_diff"))
         flow.watch_diff(bias1, test_global_storage.Setter("bias1_diff"))
         flow.watch_diff(bias2, test_global_storage.Setter("bias2_diff"))
         if data_type == "float16":
             y1 = flow.cast(
                 flow.math.gelu(
                     flow.nn.bias_add(
                         flow.cast(x1, dtype=flow.float16),
                         flow.cast(bias1, dtype=flow.float16),
                         data_format=data_format,
                     )
                 ),
                 dtype=flow.float,
             )
             y2 = flow.cast(
                 flow.nn.fused_bias_add_gelu(
                     flow.cast(x2, dtype=flow.float16),
                     flow.cast(bias2, dtype=flow.float16),
                     data_format=data_format,
                 ),
                 dtype=flow.float,
             )
         else:
             y1 = flow.math.gelu(
                 flow.nn.bias_add(x1, bias1, data_format=data_format)
             )
             y2 = flow.nn.fused_bias_add_gelu(x2, bias2, data_format=data_format)
         flow.watch(y1, test_global_storage.Setter("y1"))
         flow.watch(y2, test_global_storage.Setter("y2"))
         flow.watch_diff(y1, test_global_storage.Setter("y1_diff"))
         flow.watch_diff(y2, test_global_storage.Setter("y2_diff"))
         loss = y1 + y2
     flow.optimizer.SGD(
         flow.optimizer.PiecewiseConstantScheduler([], [0.001]), momentum=0
     ).minimize(flow.math.reduce_sum(loss))
     return loss
Ejemplo n.º 12
0
 def slice_fn():
     with flow.scope.placement(device_tag, "0:0-{}".format(device_num - 1)):
         var = flow.get_variable(
             name="var",
             shape=var_shape,
             dtype=flow_dtype,
             initializer=flow.random_uniform_initializer(-10,
                                                         10,
                                                         dtype=flow_dtype),
             distribute=flow.distribute.split(split_axis),
         )
         flow.watch(var, test_global_storage.Setter("var"))
         ret = flow.experimental.logical_slice(var, slice_tuples)
         return ret
Ejemplo n.º 13
0
 def MatmulJob():
     with flow.scope.placement(device_type, "0:0"):
         a = flow.get_variable(
             "a",
             shape=a_shape,
             dtype=dtype,
             initializer=flow.random_uniform_initializer(minval=0,
                                                         maxval=1),
             trainable=True,
         )
         b = flow.get_variable(
             "b",
             shape=b_shape,
             dtype=dtype,
             initializer=flow.random_uniform_initializer(minval=0,
                                                         maxval=1),
             trainable=True,
         )
         if data_type == "float16":
             out = flow.matmul(
                 flow.cast(a, dtype=flow.float16),
                 flow.cast(b, dtype=flow.float16),
                 transpose_a,
                 transpose_b,
                 alpha,
             )
             c = flow.get_variable(
                 "c",
                 shape=out.shape,
                 dtype=dtype,
                 initializer=flow.random_uniform_initializer(minval=-1,
                                                             maxval=1),
                 trainable=True,
             )
             loss = flow.cast(out + flow.cast(c, dtype=flow.float16),
                              dtype=flow.float)
         else:
             out = flow.matmul(a, b, transpose_a, transpose_b, alpha)
             c = flow.get_variable(
                 "c",
                 shape=out.shape,
                 dtype=dtype,
                 initializer=flow.random_uniform_initializer(minval=-1,
                                                             maxval=1),
                 trainable=True,
             )
             loss = out + c
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(a, test_global_storage.Setter("a"))
         flow.watch_diff(a, test_global_storage.Setter("a_diff"))
         flow.watch(b, test_global_storage.Setter("b"))
         flow.watch_diff(b, test_global_storage.Setter("b_diff"))
         flow.watch(c, test_global_storage.Setter("c"))
         flow.watch_diff(c, test_global_storage.Setter("c_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 14
0
 def FlattenJob() -> flow.typing.Numpy:
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "in",
             shape=input_shape,
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=2,
                                                         maxval=5),
             trainable=True,
         )
         loss = flow.flatten(x, start_dim=start_dim, end_dim=end_dim)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         return loss
Ejemplo n.º 15
0
 def ReduceMinJob(x: oft.Numpy.Placeholder(input_shape, dtype=flow.float)):
     with flow.scope.placement(device_type, "0:0"):
         x += flow.get_variable(
             name="v1",
             shape=input_shape,
             dtype=flow.float,
             initializer=flow.zeros_initializer(),
         )
         loss = flow.math.reduce_min(x, axis=axis, keepdims=keepdims)
         loss = flow.identity(loss)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 16
0
 def CastJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "in",
             shape=input_shape,
             dtype=type_name_to_flow_type[dtype],
             initializer=flow.random_uniform_initializer(),
             trainable=True,
         )
         loss = flow.cast(x, dtype=flow.float)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 17
0
 def SquareJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x",
             shape=x_shape,
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=-10,
                                                         maxval=10),
             trainable=True,
         )
         loss = flow.math.square(x)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 18
0
 def ActivationJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x",
             shape=shape,
             dtype=data_type,
             initializer=flow.random_uniform_initializer(minval=-10,
                                                         maxval=10),
             trainable=True,
         )
         loss = of_activation_map[activation_type](x)
         lr_scheduler = flow.optimizer.PiecewiseConstantScheduler([],
                                                                  [0.0001])
         flow.optimizer.SGD(lr_scheduler, momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 19
0
 def ReduceSumJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "in",
             shape=input_shape,
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=2,
                                                         maxval=5),
             trainable=True,
         )
         loss = flow.math.reduce_sum(x, axis=axis, keepdims=keepdims)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 20
0
 def LeakyReluJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x",
             shape=x_shape,
             dtype=type_name_to_flow_type[data_type],
             initializer=flow.random_uniform_initializer(minval=-10,
                                                         maxval=10),
             trainable=True,
         )
         loss = flow.nn.leaky_relu(x, alpha=alpha)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 21
0
 def RunConvBias():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x",
             shape=x_shape,
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=0,
                                                         maxval=100),
             trainable=True,
         )
         if data_format == "NCHW":
             weight_shape = (filters, x.shape[1] // groups, kernel_size,
                             kernel_size)
         else:
             weight_shape = (filters, kernel_size, kernel_size,
                             x.shape[3] // groups)
         weight = flow.get_variable(
             "conv-weight",
             shape=weight_shape,
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=0,
                                                         maxval=100),
         )
         bias = flow.get_variable(
             "conv-bias",
             shape=(filters, ),
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=0,
                                                         maxval=100),
         )
         loss = flow.nn.conv2d(
             x,
             weight,
             bias=bias,
             strides=[stride, stride],
             padding=padding,
             dilations=[1, 1],
             groups=groups,
             name="conv",
         )
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(weight, test_global_storage.Setter("weight"))
         flow.watch_diff(weight, test_global_storage.Setter("weight_diff"))
         flow.watch(bias, test_global_storage.Setter("bias"))
         flow.watch_diff(bias, test_global_storage.Setter("bias_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 22
0
 def UpsampleJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "input",
             shape=input_shape,
             dtype=type_name_to_flow_type[dtype],
             initializer=flow.random_uniform_initializer(minval=2,
                                                         maxval=5),
             trainable=False,
         )
         loss = flow.layers.upsample_2d(
             x,
             size=size,
             data_format=data_format,
             interpolation=interpolation,
             align_corners=align_corners,
         )
         flow.watch(x, test_global_storage.Setter("x1"))
         flow.watch(loss, test_global_storage.Setter("loss1"))
         return loss
Ejemplo n.º 23
0
 def SigmoidCrossEntropyWithLogitsJob(labels: oft.Numpy.Placeholder(
     shape, dtype)):
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x",
             shape=shape,
             dtype=type_name_to_flow_type[data_type],
             initializer=flow.random_uniform_initializer(minval=-10,
                                                         maxval=10),
             trainable=True,
         )
         loss = flow.nn.sigmoid_cross_entropy_with_logits(labels=labels,
                                                          logits=x)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 24
0
 def two_stage_reduce_job(x: oft.Numpy.Placeholder((4, 20, 20, 20))):
     with flow.scope.placement(device_type, "0:0"):
         x += flow.get_variable(
             name="v1",
             shape=(1,),
             dtype=flow.float,
             initializer=flow.zeros_initializer(),
         )
     with flow.scope.placement(device_type, "0:0-3"):
         loss = flow_func(
             x.with_distribute(flow.distribute.split(split_axis)),
             axis=axis,
             keepdims=True,
         )
         loss = flow.identity(loss)
         flow.optimizer.SGD(
             flow.optimizer.PiecewiseConstantScheduler([], [0.0001]), momentum=0
         ).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         return loss
Ejemplo n.º 25
0
 def test_job(
     x: oft.Numpy.Placeholder(input_shape, dtype=flow.float32),
     labels: oft.Numpy.Placeholder(label_shape, dtype=flow.int32),
 ):
     with flow.scope.placement(device_type, "0:0"):
         v = flow.get_variable(
             name="v",
             shape=(1,),
             dtype=flow.float32,
             initializer=flow.zeros_initializer(),
         )
         x = x + v
         x1 = flow.identity(x)
         x2 = flow.identity(x)
         flow.watch_diff(x1, test_global_storage.Setter("x1_diff"))
         flow.watch_diff(x2, test_global_storage.Setter("x2_diff"))
         x1 = flow.cast(x1, data_type)
         x2 = flow.cast(x2, data_type)
     with flow.scope.placement(device_type, "0:0-3"):
         y1 = (
             flow.combined_margin_loss(
                 x1.with_distribute(flow.distribute.split(1)),
                 labels.with_distribute(flow.distribute.broadcast()),
                 m1,
                 m2,
                 m3,
             )
             * s
         )
         y2 = margin_loss(m1, m2, m3, s, x2, labels)
     with flow.scope.placement(device_type, "0:0"):
         y1 = flow.cast(y1, flow.float)
         y2 = flow.cast(y2, flow.float)
         flow.watch(y1, test_global_storage.Setter("y1"))
         flow.watch(y2, test_global_storage.Setter("y2"))
         loss = y1 + y2
         flow.optimizer.SGD(
             flow.optimizer.PiecewiseConstantScheduler([], [0.001]), momentum=0
         ).minimize(flow.math.reduce_sum(loss))
     return loss
Ejemplo n.º 26
0
 def ConcatJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x",
             shape=x_shape,
             dtype=type_name_to_flow_type[dtype],
             initializer=flow.random_uniform_initializer(minval=-10, maxval=10),
             trainable=True,
         )
         y = flow.get_variable(
             "y",
             shape=y_shape,
             dtype=type_name_to_flow_type[dtype],
             initializer=flow.random_uniform_initializer(minval=-10, maxval=10),
             trainable=True,
         )
         x = flow.cast_to_current_logical_view(x)
         y = flow.cast_to_current_logical_view(y)
         loss = flow.concat([x, y], axis)
         flow.optimizer.SGD(
             flow.optimizer.PiecewiseConstantScheduler([], [0.0001]), momentum=0
         ).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(y, test_global_storage.Setter("y"))
         flow.watch_diff(y, test_global_storage.Setter("y_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss
Ejemplo n.º 27
0
 def test_element_wise_mul_job(
         x: oft.Numpy.Placeholder(shape, dtype=flow.float),
         y: oft.Numpy.Placeholder(shape, dtype=flow.float),
 ):
     with flow.scope.placement(device, "0:0"):
         x += flow.get_variable(
             name="vx",
             shape=(1, ),
             dtype=flow.float,
             initializer=flow.zeros_initializer(),
         )
         y += flow.get_variable(
             name="vy",
             shape=(1, ),
             dtype=flow.float,
             initializer=flow.zeros_initializer(),
         )
         x = flow.cast(x, dtype=flow_type)
         y = flow.cast(y, dtype=flow_type)
         out = flow.math.multiply(x, y)
         out = flow.cast(out, dtype=flow.float)
         flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler(
             [], [0.0001]),
                            momentum=0).minimize(out)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(y, test_global_storage.Setter("y"))
         flow.watch_diff(y, test_global_storage.Setter("y_diff"))
         flow.watch(out, test_global_storage.Setter("out"))
         flow.watch_diff(out, test_global_storage.Setter("out_diff"))
         return out
Ejemplo n.º 28
0
 def SplitLikeJob(x: oft.Numpy.Placeholder(x_shape, dtype=flow.float)):
     v = flow.get_variable(
         "x",
         shape=x_shape,
         dtype=flow.float,
         initializer=flow.constant_initializer(0),
         trainable=True,
     )
     x += v
     like0 = flow.constant(0, dtype=flow.float, shape=like0_shape)
     like1 = flow.constant(0, dtype=flow.float, shape=like1_shape)
     with flow.scope.placement("gpu", "0:0"):
         (y0, y1) = split_like(x, [like0, like1], "split_like")
         loss = y0
     flow.optimizer.SGD(
         flow.optimizer.PiecewiseConstantScheduler([], [0.0001]), momentum=0
     ).minimize(loss)
     flow.watch(x, test_global_storage.Setter("x"))
     flow.watch_diff(x, test_global_storage.Setter("x_diff"))
     flow.watch(loss, test_global_storage.Setter("loss"))
     flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
     return (y0, y1)
Ejemplo n.º 29
0
 def SparseSoftmaxCrossEntropyWithLogitsJob(
     labels: oft.Numpy.Placeholder(
         (batch_size,), dtype=type_name_to_flow_type[label_type]
     )
 ):
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x",
             shape=(batch_size, num_classes),
             dtype=type_name_to_flow_type[data_type],
             initializer=flow.random_uniform_initializer(minval=-10, maxval=10),
             trainable=True,
         )
         prediction = flow.nn.softmax(logits=x)
         loss = flow.nn.sparse_cross_entropy(labels=labels, prediction=prediction)
         loss = flow.math.square(loss)
         flow.optimizer.SGD(
             flow.optimizer.PiecewiseConstantScheduler([], [0.0001]), momentum=0
         ).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
     return loss
Ejemplo n.º 30
0
 def ConvJob():
     with flow.scope.placement(device_type, "0:0"):
         x = flow.get_variable(
             "x",
             shape=x_shape,
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=0, maxval=100),
             trainable=True,
         )
         if data_format == "NCDHW":
             weight_shape = (
                 filters,
                 x.shape[1] // groups,
                 kernel_size,
                 kernel_size,
                 kernel_size,
             )
         else:
             weight_shape = (
                 filters,
                 kernel_size,
                 kernel_size,
                 kernel_size,
                 x.shape[4] // groups,
             )
         weight = flow.get_variable(
             "conv-weight",
             shape=weight_shape,
             dtype=flow.float,
             initializer=flow.random_uniform_initializer(minval=0, maxval=100),
         )
         loss = flow.nn.conv3d(
             x,
             weight,
             strides=[stride_d, stride_h, stride_w],
             padding=of_padding,
             data_format=data_format,
             dilations=[dilation_d, dilation_h, dilation_w],
             groups=groups,
         )
         flow.optimizer.SGD(
             flow.optimizer.PiecewiseConstantScheduler([], [0.0001]), momentum=0
         ).minimize(loss)
         flow.watch(x, test_global_storage.Setter("x"))
         flow.watch_diff(x, test_global_storage.Setter("x_diff"))
         flow.watch(weight, test_global_storage.Setter("weight"))
         flow.watch_diff(weight, test_global_storage.Setter("weight_diff"))
         flow.watch(loss, test_global_storage.Setter("loss"))
         flow.watch_diff(loss, test_global_storage.Setter("loss_diff"))
         return loss