Ejemplo n.º 1
0
 def _test_linear_graph_save_load_cpu(test_case):
     _test_linear_graph_save_load_global(test_case, flow.device("cpu"))
Ejemplo n.º 2
0
def main(args):
    train_aug = Compose([
        HorizontalFlip(p=0.5),
        Rotate(15),
    ])

    train_data_loader = face_seg(args.dataset_path,
                                 args.batch_size,
                                 augmentation=train_aug)
    print(len(train_data_loader))

    # oneflow init
    start_t = time.time()
    linknet34_module = LinkNet34(pretrained=True,
                                 pretrained_model_path=args.model_path)
    end_t = time.time()

    linknet34_module.to(flow.device("cuda"))
    of_sgd = flow.optim.SGD(linknet34_module.parameters(),
                            lr=args.learning_rate,
                            momentum=args.mom)
    cosine = flow.optim.lr_scheduler.CosineAnnealingLR(of_sgd, 2)

    of_losses = []
    criterion = LossBinary(jaccard_weight=1)
    for epoch in range(args.epochs):
        linknet34_module.train()

        train_data_loader.shuffle_data()
        epoch_loss = 0
        for b in range(len(train_data_loader)):

            of_sgd.zero_grad()
            image_nd, label_nd = train_data_loader[b]
            # oneflow train
            start_t = time.time()
            image = flow.Tensor(image_nd)
            label = flow.Tensor(label_nd,
                                dtype=flow.float32,
                                requires_grad=False)
            image = image.to(flow.device("cuda"))
            label = label.to(flow.device("cuda"))
            logits = linknet34_module(image)
            mask_probs_flat = flow.reshape(logits, shape=[-1])
            true_masks_flat = flow.reshape(label, shape=[-1])
            loss = criterion(mask_probs_flat, true_masks_flat)
            epoch_loss += loss.numpy()
            loss.backward()
            of_sgd.step()
            cosine.step()
            end_t = time.time()
            l = loss.numpy()
            of_losses.append(l)
            sys.stdout.write(
                f"\rEpoch: {epoch} ---- Loss: {numpy.round(epoch_loss / (b + 1), 4)} ----- num: {b} "
            )
            sys.stdout.flush()

    flow.save(linknet34_module.state_dict(), args.save_model_name)

    writer = open("of_losses.txt", "w")
    for o in of_losses:
        writer.write("%f\n" % o)
    writer.close()
Ejemplo n.º 3
0
def _test_instancenorm3d(test_case, device):
    input_arr = np.array(
        [
            [
                [
                    [
                        [1.04569761, 0.22863248, 1.42439335, 1.62249689],
                        [-0.80578825, -0.27276461, 1.04556507, 0.56864134],
                        [-1.24085419, -1.23960097, 0.33451416, -1.84820402],
                    ],
                    [
                        [-1.511261, 1.06157517, -0.26715858, -1.32888141],
                        [1.17976881, -0.07931171, 0.33910684, -1.93458573],
                        [-1.72659647, 0.79049652, 0.39102785, -1.16264882],
                    ],
                ],
                [
                    [
                        [0.30067973, -1.2912226, -0.61508225, 0.56454001],
                        [0.87074187, -1.69257376, 0.36119148, -0.31014289],
                        [0.20776964, 1.26195488, -1.37122193, -0.17945234],
                    ],
                    [
                        [-0.31112407, -0.80682631, 0.8233194, 0.6384975],
                        [0.57617527, 0.45505028, 1.68286151, -1.09590744],
                        [-1.18127546, -1.07529277, 0.52779943, 1.21755926],
                    ],
                ],
            ],
            [
                [
                    [
                        [-0.12832351, 1.05625455, -0.23253249, -0.64747611],
                        [-0.00738123, -1.41390089, -1.92664144, -0.21427625],
                        [-0.94631219, -0.86493989, 0.21026905, 0.24989732],
                    ],
                    [
                        [1.3859182, 1.72002107, 0.50091892, 1.04198896],
                        [0.71694594, 1.66417023, -1.63030052, 0.77182641],
                        [0.71545083, 1.96458366, -1.99031931, 1.3196714],
                    ],
                ],
                [
                    [
                        [1.80091702, 0.02834973, 0.82259214, -1.05597501],
                        [-0.58212207, 0.44205949, -0.14740003, -0.994508],
                        [1.14678114, -0.39196097, 1.2554798, -0.41829324],
                    ],
                    [
                        [-1.0153903, -0.25755713, -1.81756333, -1.06781159],
                        [1.79680841, -1.9107133, -0.64325796, -1.94640775],
                        [1.30671156, 1.20445339, -1.26262901, -0.79494188],
                    ],
                ],
            ],
        ],
        dtype=np.float32,
    )
    output_arr = np.array(
        [
            [
                [
                    [
                        [1.067, 0.3324, 1.4075, 1.5856],
                        [-0.5976, -0.1184, 1.0669, 0.6381],
                        [-0.9888, -0.9877, 0.4276, -1.5349],
                    ],
                    [
                        [-1.2319, 1.0813, -0.1134, -1.068],
                        [1.1876, 0.0555, 0.4317, -1.6126],
                        [-1.4256, 0.8376, 0.4784, -0.9185],
                    ],
                ],
                [
                    [
                        [0.3447, -1.3751, -0.6446, 0.6298],
                        [0.9606, -1.8087, 0.4101, -0.3152],
                        [0.2444, 1.3833, -1.4615, -0.174],
                    ],
                    [
                        [-0.3162, -0.8518, 0.9094, 0.7097],
                        [0.6424, 0.5115, 1.838, -1.1641],
                        [-1.2563, -1.1418, 0.5901, 1.3353],
                    ],
                ],
            ],
            [
                [
                    [
                        [-0.2327, 0.8016, -0.3236, -0.6859],
                        [-0.1271, -1.3551, -1.8028, -0.3077],
                        [-0.9469, -0.8758, 0.063, 0.0976],
                    ],
                    [
                        [1.0895, 1.3812, 0.3167, 0.7892],
                        [0.5054, 1.3324, -1.5441, 0.5533],
                        [0.5041, 1.5947, -1.8584, 1.0316],
                    ],
                ],
                [
                    [
                        [1.7507, 0.1901, 0.8894, -0.7645],
                        [-0.3473, 0.5544, 0.0354, -0.7104],
                        [1.1748, -0.1799, 1.2705, -0.2031],
                    ],
                    [
                        [-0.7288, -0.0616, -1.435, -0.7749],
                        [1.7471, -1.517, -0.4012, -1.5485],
                        [1.3156, 1.2256, -0.9465, -0.5347],
                    ],
                ],
            ],
        ],
        dtype=np.float32,
    )
    m = flow.nn.InstanceNorm3d(num_features=2, eps=1e-05, momentum=0.1).to(
        device=flow.device(device)
    )
    x = flow.tensor(input_arr, dtype=flow.float32, device=flow.device(device))
    y = m(x)
    test_case.assertTrue(np.allclose(y.numpy(), output_arr, 0.0001, 0.0001))
    m.eval()
    y = m(x)
    test_case.assertTrue(np.allclose(y.numpy(), output_arr, 0.0001, 0.0001))
Ejemplo n.º 4
0
def _test_randn(test_case, device, shape):
    y1 = flow.randn(*shape, device=flow.device(device))
    y2 = flow.randn(*shape, device=flow.device(device))
    test_case.assertTrue(
        not np.allclose(y1.numpy(), y2.numpy(), atol=1e-4, rtol=1e-4))
    test_case.assertTrue(shape == y1.shape)
Ejemplo n.º 5
0
def _test_randn_tuple_shape(test_case, device, shape):
    y1 = flow.randn(shape, device=flow.device(device))
    y2 = flow.randn(shape, device=flow.device(device))

    test_case.assertTrue(not np.array_equal(y1.numpy(), y2.numpy()))
    test_case.assertTrue(shape == y1.shape)
Ejemplo n.º 6
0
def new_ones_op(x,
                size=None,
                dtype=None,
                device=None,
                placement=None,
                sbp=None,
                requires_grad=False):
    if isinstance(device, str):
        device = flow.device(device)
    if size != None:
        size = _single(size)
    new_size = size
    new_dtype = dtype
    new_device = device
    new_placement = placement
    new_sbp = sbp
    new_requires_grad = requires_grad
    if size is None:
        new_size = x.shape
    if dtype is None:
        new_dtype = x.dtype
    if device is None:
        new_device = x.device if x.is_local else None
    if placement is None:
        new_placement = x.placement if x.is_global else None
    if sbp is None:
        new_sbp = x.sbp if x.is_global else None
    if new_placement is not None:
        assert device is None
        assert new_sbp is not None
    assert isinstance(
        new_size,
        (int, tuple, flow.Size)), f"size parameter not correct, please check!"
    assert isinstance(
        new_dtype, flow.dtype), f"dtype parameter not correct, please check!"
    if new_placement is not None:
        assert isinstance(
            new_placement,
            flow.placement), f"device parameter not correct, please check!"
        assert isinstance(
            new_sbp,
            flow.sbp.sbp), f"device parameter not correct, please check!"
    else:
        assert isinstance(
            new_device,
            (str, flow.device)), f"device parameter not correct, please check!"
    assert isinstance(
        new_requires_grad,
        bool), f"requires_grad parameter not correct, please check!"
    if placement is not None:
        res = flow._C.global_constant(new_size,
                                      1.0,
                                      dtype=new_dtype,
                                      placement=placement,
                                      sbp=sbp)
    else:
        res = flow._C.constant(new_size,
                               1.0,
                               dtype=new_dtype,
                               device=new_device)
    res.requires_grad = new_requires_grad
    return res
Ejemplo n.º 7
0
 def test_non_default_device(test_case):
     x = flow.randn(2, 3, device="cuda:1")
     test_case.assertEqual(x.device, flow.device("cuda:1"))
Ejemplo n.º 8
0
 def test_tensor_to_cast_h2d(test_case):
     input = flow.Tensor(np.random.randn(2, 3, 4, 5))
     output = input.to(device=flow.device("cuda"), dtype=flow.int)
     test_case.assertEqual(output.dtype, flow.int)
     test_case.assertEqual(output.device, flow.device("cuda"))
Ejemplo n.º 9
0
def _test_interpolate_trilinear_3d_align_corners(test_case, device):
    input = flow.tensor(
        np.arange(1, 9).reshape((1, 1, 2, 2, 2)),
        device=flow.device(device),
        dtype=flow.float32,
        requires_grad=True,
    )
    of_out = flow.nn.functional.interpolate(input,
                                            scale_factor=2.0,
                                            mode="trilinear",
                                            align_corners=True)
    np_out = np.array([[[
        [
            [1.0, 1.3333332538604736, 1.6666667461395264, 2.0],
            [
                1.6666666269302368,
                2.0,
                2.3333334922790527,
                2.6666665077209473,
            ],
            [
                2.3333332538604736,
                2.6666665077209473,
                3.0,
                3.3333334922790527,
            ],
            [3.0, 3.3333332538604736, 3.6666667461395264, 4.0],
        ],
        [
            [
                2.3333334922790527,
                2.6666665077209473,
                3.0,
                3.3333332538604736,
            ],
            [3.0, 3.3333330154418945, 3.6666665077209473, 4.0],
            [
                3.6666665077209473,
                4.0,
                4.333333492279053,
                4.6666669845581055,
            ],
            [4.333333492279053, 4.666666030883789, 5.0, 5.3333330154418945],
        ],
        [
            [3.6666667461395264, 4.0, 4.333333492279053, 4.666666507720947],
            [4.333333492279053, 4.666666507720947, 5.0, 5.3333330154418945],
            [5.0, 5.333333492279053, 5.6666669845581055, 6.0],
            [
                5.6666669845581055,
                6.0,
                6.333333492279053,
                6.6666669845581055,
            ],
        ],
        [
            [5.0, 5.3333330154418945, 5.666666507720947, 6.0],
            [
                5.666666507720947,
                5.999999523162842,
                6.3333330154418945,
                6.666666507720947,
            ],
            [6.333333492279053, 6.666666030883789, 7.0, 7.333333492279053],
            [7.0, 7.3333330154418945, 7.6666669845581055, 8.0],
        ],
    ]]])
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 0.0001, 0.0001))
    of_out = of_out.sum()
    of_out.backward()
    np_grad = [[[
        [[7.999999523162842, 8.0], [7.999999523162842, 8.0]],
        [[8.0, 8.0], [8.0, 8.0]],
    ]]]
    test_case.assertTrue(np.allclose(input.grad.numpy(), np_grad, 1e-05,
                                     1e-05))
Ejemplo n.º 10
0
    def forward(self, x):
        assert len(x.shape) > len(
            self.normalized_shape
        ), "Input tensor dim must greater than normalized dim!"
        self.begin_norm_axis = len(x.shape) - len(self.normalized_shape)
        self.begin_params_axis = len(x.shape) - len(self.normalized_shape)

        if x.device == flow.device("cpu"):
            reduce_axis = []
            for dim in range(len(x.shape)):
                if dim >= self.begin_norm_axis:
                    reduce_axis.append(dim)

            mean = x.mean(dim=reduce_axis, keepdim=True)
            variance = x.var(dim=reduce_axis, keepdim=True)

            axis = self.begin_norm_axis

            params_shape = x.shape[self.begin_params_axis:]
            weight = self.weight
            bias = self.bias
            if len(mean.shape) == 1:
                nd_params_shape = [1] * len(x.shape)
                nd_params_shape[self.begin_norm_axis] = params_shape[0]
                mean = mean.reshape(shape=nd_params_shape)
                variance = variance.reshape(shape=nd_params_shape)

                if self.weight and params_shape[0] == self.weight.nelement():
                    weight = self.weight.reshape(shape=nd_params_shape)
                if self.bias and params_shape[0] == self.bias.nelement():
                    bias = self.bias.reshape(shape=nd_params_shape)
            elif len(mean.shape) == len(x.shape):
                pass
            else:
                raise ValueError(
                    "shape of mean and variance should be 1D or has number of axes and x's"
                )

            variance += self.epsilon
            normalized = (x - mean) * variance.rsqrt()

            if self.weight:
                normalized = normalized * weight
            if self.bias:
                normalized = normalized + bias
            affined = normalized

            nd_params_shape = [1] * (len(x.shape) -
                                     len(params_shape)) + list(params_shape)
            if self.elementwise_affine:
                affined = affined * self.weight
                affined = affined + self.bias
            return affined
        else:
            if self.elementwise_affine:
                res = self._op(
                    x,
                    self.weight,
                    self.bias,
                    center=True,
                    scale=True,
                    begin_norm_axis=self.begin_norm_axis,
                    begin_params_axis=self.begin_params_axis,
                    epsilon=self.epsilon,
                )[0]
            else:
                res = self._op2(
                    x,
                    center=False,
                    scale=False,
                    begin_norm_axis=self.begin_norm_axis,
                    begin_params_axis=self.begin_params_axis,
                    epsilon=self.epsilon,
                )[0]
            return res
Ejemplo n.º 11
0
 def test_tensor_to_h2h(test_case):
     input = flow.Tensor(np.random.randn(2, 3, 4, 5))
     output = input.to(device=flow.device("cpu"))
     test_case.assertEqual(output.device, flow.device("cpu"))
     test_case.assertTrue(
         np.allclose(input.numpy(), output.numpy(), rtol=1e-04, atol=1e-04))
Ejemplo n.º 12
0
def _test_embedding_scale_by_freq(test_case, device):
    weight = np.array(
        [
            [0.68258786, 0.6957856, 1.1829041],
            [1.0154, -1.0616943, 0.50303376],
            [0.29679507, 0.65562993, 1.0424724],
            [-0.42980736, -0.35347632, -0.15600166],
            [0.6763601, -0.24286619, -2.0873115],
            [-0.13371214, -0.5589277, 1.9173933],
            [0.08762296, 1.0264007, -0.67938024],
            [0.32019204, -0.26137325, -1.3534237],
            [-1.1555519, -0.67776406, 0.27372134],
            [1.0615997, -0.59715784, 1.9855849],
        ],
        dtype=np.float32,
    )
    output = np.array(
        [
            [
                [1.0154, -1.0616943, 0.50303376],
                [0.29679507, 0.65562993, 1.0424724],
                [0.6763601, -0.24286619, -2.0873115],
                [-0.13371214, -0.5589277, 1.9173933],
            ],
            [
                [0.6763601, -0.24286619, -2.0873115],
                [-0.42980736, -0.35347632, -0.15600166],
                [0.29679507, 0.65562993, 1.0424724],
                [1.0615997, -0.59715784, 1.9855849],
            ],
        ],
        dtype=np.float32,
    )
    indices = flow.tensor(
        [[1, 2, 4, 5], [4, 3, 2, 9]],
        dtype=flow.int,
        device=flow.device(device),
        requires_grad=False,
    )
    m = flow.nn.Embedding(10,
                          3,
                          scale_grad_by_freq=True,
                          _weight=flow.Tensor(weight))
    m = m.to(device)
    y = m(indices)
    test_case.assertTrue(np.allclose(y.numpy(), output, 1e-05, 1e-05))
    y = y.sum()
    y.backward()
    weight_grad_np = [
        [0.0, 0.0, 0.0],
        [1.0, 1.0, 1.0],
        [1.0, 1.0, 1.0],
        [1.0, 1.0, 1.0],
        [1.0, 1.0, 1.0],
        [1.0, 1.0, 1.0],
        [0.0, 0.0, 0.0],
        [0.0, 0.0, 0.0],
        [0.0, 0.0, 0.0],
        [1.0, 1.0, 1.0],
    ]
    test_case.assertTrue(
        np.allclose(m.weight.grad.numpy(), weight_grad_np, 1e-05, 1e-05))
Ejemplo n.º 13
0
 def test_scalar_train_graph_cpu(test_case):
     _test_scalar_train_graph(test_case, flow.device("cpu"))
Ejemplo n.º 14
0
 def test_scalar_train_graph_gpu(test_case):
     _test_scalar_train_graph(test_case, flow.device("cuda"))
 def __init__(self):
     super().__init__()
     self.para0 = flow.nn.Parameter(
         flow.Tensor(init_value, device=flow.device(device)))
Ejemplo n.º 16
0
def _test_interpolate_area_3d(test_case, device):
    input = flow.tensor(
        np.array([[[
            [
                [
                    -1.077571799600885,
                    -0.7804538890365837,
                    -1.2627538752119443,
                    0.9993507145120477,
                ],
                [
                    2.0222532489157516,
                    1.103451377699465,
                    -0.4377324754879578,
                    1.890491810587517,
                ],
                [
                    -0.5593861899064654,
                    -0.4949520241526519,
                    -0.18536721363519787,
                    -0.6098969866775772,
                ],
                [
                    -1.6536215260171816,
                    -1.0392583540436786,
                    0.3686776597613967,
                    -0.5356882834951805,
                ],
            ],
            [
                [
                    -1.2617900664449953,
                    -1.4390921091631532,
                    0.20654399652431357,
                    0.8186472101906713,
                ],
                [
                    -0.3033378863400014,
                    -0.8173269764076293,
                    -0.3767515097625614,
                    -0.11021655039337777,
                ],
                [
                    -0.22977043608192885,
                    1.2717196366649905,
                    -0.4790851297878291,
                    -1.4495369404727856,
                ],
                [
                    -1.2802093286977783,
                    -0.11184514806663474,
                    1.7022167087210984,
                    -1.7354837287725355,
                ],
            ],
            [
                [
                    2.4706497991773606,
                    -0.6549702631973298,
                    -0.9318107079571676,
                    1.4652904271682428,
                ],
                [
                    1.1419864234341397,
                    1.389909081086008,
                    0.9657841900525568,
                    -0.8563114264976619,
                ],
                [
                    0.19515087084250754,
                    -0.37808457398571094,
                    0.2938625398496183,
                    0.9279930510353327,
                ],
                [
                    -0.9374118277994007,
                    0.3341831730452431,
                    -0.2792542765303833,
                    0.38029090707066726,
                ],
            ],
            [
                [
                    0.5918686659736041,
                    -0.7870631089938902,
                    -0.9534344874245392,
                    0.31341612954718795,
                ],
                [
                    0.7509029444145228,
                    -0.9299288398562323,
                    -0.7343054052782476,
                    -0.8806481590696694,
                ],
                [
                    -0.4707853016353985,
                    0.12253641652645629,
                    0.5088022039832846,
                    0.520391789327562,
                ],
                [
                    -0.0861300651163632,
                    0.30291348404866386,
                    -0.6268565873680123,
                    -0.27469204305759976,
                ],
            ],
        ]]]),
        dtype=flow.float32,
        device=flow.device(device),
        requires_grad=True,
    )
    of_out_1 = flow.nn.functional.interpolate(input,
                                              size=(2, 2, 2),
                                              mode="area")
    of_out_2 = flow.nn.functional.interpolate(input,
                                              scale_factor=0.5,
                                              mode="area")
    np_out = np.array([[[
        [
            [-0.3192335125472539, 0.2159474151198386],
            [-0.5121654212876662, -0.3655204892948264],
        ],
        [
            [0.4966693377547728, -0.2015024299324123],
            [-0.11470347800925032, 0.18131719803880864],
        ],
    ]]])
    test_case.assertTrue(np.allclose(of_out_1.numpy(), np_out, 1e-05, 1e-05))
    test_case.assertTrue(np.allclose(of_out_2.numpy(), np_out, 1e-05, 1e-05))
    of_out_1 = of_out_1.sum()
    of_out_1.backward()
    np_grad = np.array([[[
        [
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
        ],
        [
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
        ],
        [
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
        ],
        [
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
            [0.125, 0.125, 0.125, 0.125],
        ],
    ]]])
    test_case.assertTrue(np.allclose(input.grad.numpy(), np_grad, 1e-05,
                                     1e-05))
Ejemplo n.º 17
0
def _test_inplace_add(test_case, shape, device):
    np_x = np.random.randn(*shape)
    of_x = flow.tensor(
        np_x, dtype=flow.float32, device=flow.device(device), requires_grad=True
    )
    of_x_inplace = of_x + 1
    id_old = id(of_x_inplace)
    of_x_inplace.add_(5)
    test_case.assertEqual(id_old, id(of_x_inplace))
    np_out = np_x + 1 + 5
    test_case.assertTrue(np.allclose(of_x_inplace.numpy(), np_out, 1e-05, 1e-05))
    of_x_inplace = of_x_inplace.sum()
    of_x_inplace.backward()
    test_case.assertTrue(np.allclose(of_x.grad.numpy(), np.ones(shape), 1e-05, 1e-05))

    of_x = flow.tensor(
        np_x, dtype=flow.float32, device=flow.device(device), requires_grad=True
    )
    of_y = flow.tensor(
        np.random.randn(*shape),
        dtype=flow.float32,
        device=flow.device(device),
        requires_grad=False,
    )
    of_x_inplace = of_x + 1
    id_old = id(of_x_inplace)
    of_x_inplace.add_(of_y)
    test_case.assertEqual(id_old, id(of_x_inplace))
    np_out = np_x + 1 + of_y.numpy()
    test_case.assertTrue(np.allclose(of_x_inplace.numpy(), np_out, 1e-05, 1e-05))
    of_x_inplace = of_x_inplace.sum()
    of_x_inplace.backward()
    test_case.assertTrue(np.allclose(of_x.grad.numpy(), np.ones(shape), 1e-05, 1e-05))

    of_x = flow.tensor(
        np_x, dtype=flow.float32, device=flow.device(device), requires_grad=True
    )
    of_y = flow.tensor(
        np.random.randn(*shape),
        dtype=flow.float32,
        device=flow.device(device),
        requires_grad=False,
    )
    of_x_inplace = of_x + 1
    id_old = id(of_x_inplace)
    of_x_inplace += of_y
    test_case.assertEqual(id_old, id(of_x_inplace))
    np_out = np_x + 1 + of_y.numpy()
    test_case.assertTrue(np.allclose(of_x_inplace.numpy(), np_out, 1e-05, 1e-05))
    of_x_inplace = of_x_inplace.sum()
    of_x_inplace.backward()
    test_case.assertTrue(np.allclose(of_x.grad.numpy(), np.ones(shape), 1e-05, 1e-05))

    of_x = flow.tensor(
        np_x, dtype=flow.float32, device=flow.device(device), requires_grad=True
    )
    of_y = flow.tensor(
        np.array([5.0]),
        dtype=flow.float32,
        device=flow.device(device),
        requires_grad=False,
    )
    of_x_inplace = of_x + 1
    id_old = id(of_x_inplace)
    of_x_inplace.add_(of_y)
    test_case.assertEqual(id_old, id(of_x_inplace))
    np_out = np_x + 6
    test_case.assertTrue(np.allclose(of_x_inplace.numpy(), np_out, 1e-05, 1e-05))
    of_x_inplace = of_x_inplace.sum()
    of_x_inplace.backward()
    test_case.assertTrue(np.allclose(of_x.grad.numpy(), np.ones(shape), 1e-05, 1e-05))

    of_x = flow.tensor(
        np_x, dtype=flow.float32, device=flow.device(device), requires_grad=True
    )
    np_y = np.random.randn(*shape[:-1], 1)
    of_y = flow.tensor(
        np_y, dtype=flow.float32, device=flow.device(device), requires_grad=False
    )
    of_x_inplace = of_x + 1
    id_old = id(of_x_inplace)
    of_x_inplace.add_(of_y)
    test_case.assertEqual(id_old, id(of_x_inplace))
    np_out = np_x + 1 + np_y
    test_case.assertTrue(np.allclose(of_x_inplace.numpy(), np_out, 1e-05, 1e-05))
    of_x_inplace = of_x_inplace.sum()
    of_x_inplace.backward()
    test_case.assertTrue(np.allclose(of_x.grad.numpy(), np.ones(shape), 1e-05, 1e-05))
Ejemplo n.º 18
0
def _test_tensor_scalar_logical_and(test_case, shape, scalar, dtype, device):
    np_input = np.random.randint(3, size=shape)
    input = flow.tensor(np_input, dtype=dtype, device=flow.device(device))
    of_out = input.logical_and(scalar)
    np_out = np.logical_and(np_input, scalar)
    test_case.assertTrue(np.array_equal(of_out.numpy(), np_out))
Ejemplo n.º 19
0
def new_zeros_op(x,
                 size=None,
                 dtype=None,
                 device=None,
                 placement=None,
                 sbp=None,
                 requires_grad=False):
    if isinstance(device, str):
        device = flow.device(device)
    if size is None or len(size) == 0:
        new_size = x.shape
    else:
        new_size = _handle_size_arg(size)
    new_dtype = dtype
    new_device = device
    new_placement = placement
    new_sbp = sbp
    new_requires_grad = requires_grad

    if dtype is None:
        new_dtype = x.dtype
    if device is None:
        new_device = x.device if x.is_local else None
    if placement is None:
        new_placement = x.placement if x.is_global else None
    if sbp is None:
        new_sbp = x.sbp if x.is_global else None
    if new_placement is not None:
        assert (
            device is None
        ), "argument 'device' must be None when argument 'placement' exist"
        assert (
            new_sbp is not None
        ), "argument 'sbp' must not be None when argument 'placement' exist"
    assert isinstance(
        new_size, (int, tuple, list, flow.Size)
    ), f"argument 'size' must be tuple of ints, not %s" % (type(new_size))
    assert isinstance(
        new_dtype,
        flow.dtype), f"argument 'dtype' must be flow.dtype, not %s" % (
            type(new_dtype))
    if new_placement is not None:
        assert isinstance(
            new_placement, flow.placement
        ), f"argument 'placement' must be flow.placement, not %s" % (
            type(new_placement))
        assert isinstance(
            new_sbp, (flow.sbp.sbp, tuple)
        ), f"argument 'sbp' must be flow.sbp.sbp, not %s" % (type(new_sbp))
    else:
        assert isinstance(new_device, (
            str,
            flow.device)), f"argument 'device' must be flow.device, not %s" % (
                type(new_device))
    assert isinstance(
        new_requires_grad,
        bool), f"argument 'requires_grad' must be bool, not %s" % (
            type(new_requires_grad))
    if new_placement is not None:
        res = flow._C.global_constant(new_size,
                                      0.0,
                                      dtype=new_dtype,
                                      placement=new_placement,
                                      sbp=new_sbp)
    else:
        res = flow._C.constant(new_size,
                               0.0,
                               dtype=new_dtype,
                               device=new_device)
    res.requires_grad = new_requires_grad
    return res
Ejemplo n.º 20
0
 def test_mock_device(test_case):
     device = flow.device("mock")
     test_case.assertEqual(device.type, "mock")
Ejemplo n.º 21
0
 def test_with_generator(test_case):
     gen = flow.Generator("cuda")
     x = flow.randn(2, 3, device="cuda", generator=gen)
     test_case.assertEqual(x.device,
                           flow.device(f"cuda:{flow.env.get_rank()}"))
Ejemplo n.º 22
0
def _test_div_impl(test_case, shape, device):
    x = flow.tensor(np.random.randn(*shape),
                    dtype=flow.float32,
                    device=flow.device(device))
    y = flow.tensor(np.random.randn(*shape),
                    dtype=flow.float32,
                    device=flow.device(device))
    of_out = flow.div(x, y)
    np_out = np.divide(x.numpy(), y.numpy())
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 0.0001, 0.0001))
    x = 5
    y = flow.tensor(np.random.randn(*shape),
                    dtype=flow.float32,
                    device=flow.device(device))
    of_out = flow.div(x, y)
    np_out = np.divide(x, y.numpy())
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 0.0001, 0.0001))
    x = flow.tensor(np.random.randn(*shape),
                    dtype=flow.float32,
                    device=flow.device(device))
    y = 5
    of_out = flow.div(x, y)
    np_out = np.divide(x.numpy(), y)
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 0.0001, 0.0001))
    x = flow.tensor(np.random.randn(*shape),
                    dtype=flow.float32,
                    device=flow.device(device))
    y = flow.tensor(np.random.randn(1, 1),
                    dtype=flow.float32,
                    device=flow.device(device))
    of_out = flow.div(x, y)
    np_out = np.divide(x.numpy(), y.numpy())
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 0.0001, 0.0001))
    x = flow.tensor(np.array([5.0]),
                    dtype=flow.float32,
                    device=flow.device(device))
    y = flow.tensor(np.random.randn(*shape),
                    dtype=flow.float32,
                    device=flow.device(device))
    of_out = flow.div(x, y)
    np_out = np.divide(x.numpy(), y.numpy())
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 0.0001, 0.0001))
    x = flow.tensor(
        np.random.randn(*shape),
        dtype=flow.float32,
        device=flow.device(device),
        requires_grad=True,
    )
    y = flow.tensor(
        np.array([5.0]),
        dtype=flow.float32,
        device=flow.device(device),
        requires_grad=True,
    )
    of_out = flow.div(x, y)
    np_out = np.divide(x.numpy(), y.numpy())
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 0.0001, 0.0001))
    of_out = of_out.sum()
    of_out.backward()
    np_grad_x = np.full(shape, 0.2)
    test_case.assertTrue(np.allclose(x.grad.numpy(), np_grad_x, 0.0001,
                                     0.0001))
Ejemplo n.º 23
0
def _test_backward(test_case, device, shape):
    x = flow.randn(*shape, device=flow.device(device), requires_grad=True)
    y = x.sum()
    y.backward()
    test_case.assertTrue(
        np.allclose(np.ones(shape), x.grad.numpy(), atol=1e-4, rtol=1e-4))
Ejemplo n.º 24
0
 def test_non_default_device(test_case):
     x = flow.tensor([2, 3], dtype=flow.float, device="cuda:1")
     y = flow._C.dropout(x)
     test_case.assertEqual(y.device, flow.device("cuda:1"))
Ejemplo n.º 25
0
def _test_randn_with_flow_size(test_case, device, shape):
    y1 = flow.randn(flow.Size(shape), device=flow.device(device))
    y2 = flow.randn(flow.Size(shape), device=flow.device(device))

    test_case.assertTrue(not np.array_equal(y1.numpy(), y2.numpy()))
    test_case.assertTrue(shape == y1.shape)
Ejemplo n.º 26
0
def _test_cast_int2float(test_case, device, shape):
    np_arr = np.random.randn(*shape).astype(np.int8)
    input = flow.tensor(np_arr, dtype=flow.int8, device=flow.device(device))
    output = flow.cast(input, flow.float32)
    np_out = np_arr.astype(np.float32)
    test_case.assertTrue(np.array_equal(output.numpy(), np_out))
Ejemplo n.º 27
0
def _test_clamp_integral(test_case, shape, device):
    input = flow.tensor(np.random.randint(3, 10, shape),
                        device=flow.device(device))
    of_out = flow.clamp(input, 1, 5)
    np_out = np.clip(input.numpy(), 1, 5)
    test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-05, 1e-05))
def compare_with_numpy_adagrad(
    test_case,
    device,
    x_shape,
    learning_rate,
    train_iters,
    lr_decay,
    weight_decay,
    initial_accumulator_value,
    eps,
):
    random_grad_seq = []
    for _ in range(train_iters):
        random_grad_seq.append(
            np.random.uniform(size=x_shape).astype(np.float32))
    init_value = np.random.uniform(size=x_shape).astype(np.float32)

    class CustomModule(flow.nn.Module):
        def __init__(self):
            super().__init__()
            self.para0 = flow.nn.Parameter(
                flow.Tensor(init_value, device=flow.device(device)))

        def forward(self, mask):
            return self.para0 * mask

    simp_module = CustomModule()
    simp_module.to(device)
    simp_module.train()

    adam0 = flow.optim.Adagrad(
        [{
            "params": simp_module.parameters(),
            "lr": learning_rate,
            "eps": eps,
            "weight_decay": weight_decay,
        }],
        lr_decay=lr_decay,
        initial_accumulator_value=initial_accumulator_value,
    )

    class CustomAdagradGraph(flow.nn.Graph):
        def __init__(self):
            super().__init__()
            self.m = simp_module
            self.add_optimizer(adam0)

        def build(self, mask_tensor):
            loss = flow.sum(self.m(mask_tensor))
            loss.backward()
            return loss

    of_res_list = []
    adagrad_graph = CustomAdagradGraph()

    for i in range(train_iters):
        mask_tensor = flow.tensor(random_grad_seq[i],
                                  requires_grad=False,
                                  device=flow.device(device))
        adagrad_x = adagrad_graph(mask_tensor)

        of_res_list.append(copy.copy(simp_module.para0.numpy()))

    np_res_list = []

    def train_by_numpy():
        x = init_value
        st = np.ones_like(x) * initial_accumulator_value

        def train_one_iter(iter, grad):
            grad = grad + weight_decay * x
            lr = learning_rate / (1 + (iter - 1) * lr_decay)
            s = st + grad * grad
            param = x - lr / (np.sqrt(s) + eps) * grad
            return (param, s)

        for i in range(1, train_iters + 1):
            (x, st) = train_one_iter(i, random_grad_seq[i - 1])
            np_res_list.append(x)
        return x

    train_by_numpy()
    test_case.assertTrue(
        np.allclose(of_res_list, np_res_list, rtol=0.001, atol=0.001))
Ejemplo n.º 29
0
def _test_instancenorm3d_backward(test_case, device):
    input_arr = np.array(
        [
            [
                [
                    [
                        [1.04569761, 0.22863248, 1.42439335, 1.62249689],
                        [-0.80578825, -0.27276461, 1.04556507, 0.56864134],
                        [-1.24085419, -1.23960097, 0.33451416, -1.84820402],
                    ],
                    [
                        [-1.511261, 1.06157517, -0.26715858, -1.32888141],
                        [1.17976881, -0.07931171, 0.33910684, -1.93458573],
                        [-1.72659647, 0.79049652, 0.39102785, -1.16264882],
                    ],
                ],
                [
                    [
                        [0.30067973, -1.2912226, -0.61508225, 0.56454001],
                        [0.87074187, -1.69257376, 0.36119148, -0.31014289],
                        [0.20776964, 1.26195488, -1.37122193, -0.17945234],
                    ],
                    [
                        [-0.31112407, -0.80682631, 0.8233194, 0.6384975],
                        [0.57617527, 0.45505028, 1.68286151, -1.09590744],
                        [-1.18127546, -1.07529277, 0.52779943, 1.21755926],
                    ],
                ],
            ],
            [
                [
                    [
                        [-0.12832351, 1.05625455, -0.23253249, -0.64747611],
                        [-0.00738123, -1.41390089, -1.92664144, -0.21427625],
                        [-0.94631219, -0.86493989, 0.21026905, 0.24989732],
                    ],
                    [
                        [1.3859182, 1.72002107, 0.50091892, 1.04198896],
                        [0.71694594, 1.66417023, -1.63030052, 0.77182641],
                        [0.71545083, 1.96458366, -1.99031931, 1.3196714],
                    ],
                ],
                [
                    [
                        [1.80091702, 0.02834973, 0.82259214, -1.05597501],
                        [-0.58212207, 0.44205949, -0.14740003, -0.994508],
                        [1.14678114, -0.39196097, 1.2554798, -0.41829324],
                    ],
                    [
                        [-1.0153903, -0.25755713, -1.81756333, -1.06781159],
                        [1.79680841, -1.9107133, -0.64325796, -1.94640775],
                        [1.30671156, 1.20445339, -1.26262901, -0.79494188],
                    ],
                ],
            ],
        ],
        dtype=np.float32,
    )
    m = flow.nn.InstanceNorm3d(num_features=2, eps=1e-05, momentum=0.1).to(
        device=flow.device(device)
    )
    x = flow.tensor(input_arr, device=flow.device(device), requires_grad=True)
    y = m(x)
    z = y.sum()
    z.backward()
    test_case.assertTrue(
        np.allclose(x.grad.numpy(), np.zeros(shape=input_arr.shape), 1e-05, 1e-05)
    )
Ejemplo n.º 30
0
 def test_linear_graph_save_load_gpu(test_case):
     _test_linear_graph_save_load_global(test_case, flow.device("cuda"))