Ejemplo n.º 1
0
def _div(x, y):
    r"""Computes the division of x by y for each element, scalar and broadcast promotation are supported.
    The formula is:
    .. math::
        out = \frac{X}{Y}
    Args:
        x (Union[int, float, flow.Tensor]): X.
        y (Union[int, float, flow.Tensor]): Y.
    For example:
    .. code-block:: python

        import oneflow as flow

        # element-wise divide
        x = flow.Tensor(np.random.randn(2,3))
        y = flow.Tensor(np.random.randn(2,3))
        out = flow.div(x,y).numpy()
        print(out.shape) # (2,3)

        # scalar divide
        x = 5
        y = flow.Tensor(np.random.randn(2,3))
        out = flow.div(x,y).numpy()
        print(out.shape) # (2,3)

        # broadcast divide
        x = flow.Tensor(np.random.randn(1,1))
        y = flow.Tensor(np.random.randn(2,3))
        out = flow.div(x,y).numpy()
        print(out.shape) # (2,3)

    """

    if isinstance(x, (int, float)):
        return ScalarMul(x)(flow.reciprocal(y))
    elif isinstance(y, (int, float)):
        if y == 0 or y == 0.0:
            y = 0.0
        else:
            y = 1.0 / (float(y))
        return ScalarMul(y)(x)
    elif x.shape == y.shape:
        return BroadcastDiv()(x, y)
    elif y.shape == (1, ):
        return ScalarDivByTensor()(x, y)
    else:
        return BroadcastDiv()(x, y)
Ejemplo n.º 2
0
 def test_reciprocal(test_case):
     x = flow.Tensor(np.random.randn(2, 3))
     of_out = flow.reciprocal(x)
     np_out = np.reciprocal(x.numpy())
     test_case.assertTrue(np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4))
Ejemplo n.º 3
0
def _reciprocal(self):
    return flow.reciprocal(self)
Ejemplo n.º 4
0
 def forward(self, x):
     return flow.reciprocal(x)