Ejemplo n.º 1
0
    def build(self, inputs, targets):
        """
        Args:
            inputs (torch.Tensor): feature matrix with shape (batch_size, feat_dim).
            targets (torch.LongTensor): ground truth labels with shape (num_classes).
        """
        n = inputs.shape[0]
        dist = math.reduce_sum(math.pow(
            inputs, flow.constant_like(inputs, 2, dtype=flow.float32)),
                               axis=1)
        shape_tensor = flow.constant(value=0.0,
                                     dtype=flow.float32,
                                     shape=(n, n))
        dist = flow.broadcast_like(dist, like=shape_tensor, broadcast_axes=[1])
        dist = math.add(
            dist, flow.transpose(dist, perm=(1, 0),
                                 batch_axis_non_change=True))
        temp1 = math.multiply(
            -2,
            flow.matmul(
                inputs,
                flow.transpose(inputs, perm=(1, 0),
                               batch_axis_non_change=True)))
        dist = math.add(dist, temp1)
        dist = math.sqrt(flow.clamp(dist, min_value=1e-12))
        mask = math.equal(
            flow.broadcast_like(targets, like=shape_tensor,
                                broadcast_axes=[1]),
            flow.transpose(flow.broadcast_like(targets,
                                               like=shape_tensor,
                                               broadcast_axes=[1]),
                           perm=(1, 0),
                           batch_axis_non_change=True))
        mask_rev = math.not_equal(
            flow.broadcast_like(targets, like=shape_tensor,
                                broadcast_axes=[1]),
            flow.transpose(flow.broadcast_like(targets,
                                               like=shape_tensor,
                                               broadcast_axes=[1]),
                           perm=(1, 0),
                           batch_axis_non_change=True))
        dist_ap, dist_an = [], []
        for i in range(n):
            temp_dist = flow.slice_v2(dist, [(i, i + 1, 1)])
            temp_mask = flow.slice_v2(mask, [(i, i + 1, 1)])
            temp_mask_rev = flow.slice_v2(mask_rev, [(i, i + 1, 1)])
            dist_ap.append(
                math.reduce_max(
                    flow.gather_nd(temp_dist, flow.where(temp_mask))))
            dist_an.append(
                math.reduce_min(
                    flow.gather_nd(temp_dist, flow.where(temp_mask_rev))))
        dist_ap = flow.concat(dist_ap, 0)
        dist_an = flow.concat(dist_an, 0)
        y = flow.ones_like(dist_an)
        # return dist_an, dist_ap, y

        return self._MarginRankingLoss(dist_an, dist_ap, y)
Ejemplo n.º 2
0
 def slice(input_blob: oft.Numpy.Placeholder(shape=(2, 5, 4), dtype=flow.float)):
     x = flow.get_variable(
         shape=(2, 5, 4),
         dtype=flow.float,
         initializer=flow.random_uniform_initializer(0, 2),
         name="variable",
     )
     x = flow.identity(x)
     flow.watch_diff(x, slice_grad_cb)
     y = flow.slice_v2(x, [(None, None, None), (2, -2, None)])
     flow.losses.add_loss(y)
     return y
Ejemplo n.º 3
0
 def slice(input_blob: oft.Numpy.Placeholder(shape=(2, 5, 4),
                                             dtype=flow.float)):
     x = flow.get_variable(
         shape=(2, 5, 4),
         dtype=flow.float,
         initializer=flow.random_uniform_initializer(0, 2),
         name="variable",
     )
     x = flow.identity(x)
     flow.watch_diff(x, slice_grad_cb)
     y = flow.slice_v2(x, [(None, None, None), (2, -2, None)])
     flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler([],
                                                                  [1e-3]),
                        momentum=0).minimize(y)
     return y
Ejemplo n.º 4
0
    def slice_with_grad_job(x: otp.Numpy.Placeholder(
        shape=input_shape, dtype=dtype)) -> otp.Numpy:
        var = flow.get_variable(
            shape=input_shape,
            dtype=dtype,
            initializer=flow.constant_initializer(0.0),
            name="variable",
        )
        x = x + var
        if callable(watch_diff_cb):
            flow.watch_diff(x, watch_diff_cb)

        y = flow.slice_v2(x, slice_tup_list, name="SliceWithGrad")
        flow.optimizer.SGD(flow.optimizer.PiecewiseConstantScheduler([],
                                                                     [1e-3]),
                           momentum=0).minimize(y)
        return y
Ejemplo n.º 5
0
 def do_slice(x, indices):
     outputs = []
     for slice_tup_list in indices:
         output = flow.slice_v2(x, slice_tup_list)
         outputs.append(output)
     return outputs
Ejemplo n.º 6
0
def _do_slice(input, args, name=None):
    outputs = []
    for slice_tup_list in args:
        output = flow.slice_v2(input, slice_tup_list, name)
        outputs.append(output)
    return outputs
Ejemplo n.º 7
0
    def forward(self, inputs, targets):
        n = inputs.shape[0]
        # Compute pairwise distance, replace by the official when merged
        tempname = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S.%f')
        shape_tensor = flow.constant(value=0.0,
                                     dtype=flow.float32,
                                     shape=(n, n))
        if self.distance == 'euclidean':
            blob_2 = flow.get_variable(
                "blob_2_" + tempname,
                shape=inputs.shape,
                initializer=flow.constant_initializer(2),
                dtype=inputs.dtype)
            dist = flow.math.pow(inputs, blob_2)

            dist = flow.math.reduce_sum(dist, axis=1, keepdims=True)
            dist = flow.broadcast_like(dist, shape_tensor)
            tempdist = flow.transpose(dist)
            dist = dist + tempdist
            inputs_t = flow.transpose(inputs)
            dist = addmm(dist, inputs, inputs_t, beta=1, alpha=-2)
            dist = flow.clamp(dist, min_value=1e-12)
            dist = flow.math.sqrt(dist)
        elif self.distance == 'cosine':
            #fnorm=flow.math.l2_normalize(inputs, axis=1)
            fnorm = flow.math.reduce_mean(flow.math.divide(
                inputs, flow.math.l2_normalize(inputs, axis=1)),
                                          axis=1,
                                          keepdims=True)

            expand_fnorm = flow.broadcast_like(fnorm,
                                               like=inputs,
                                               broadcast_axes=[1])
            l2norm = flow.math.divide(inputs, expand_fnorm)
            l2norm_t = flow.transpose(l2norm, perm=(1, 0))
            dist = flow.math.negative(flow.matmul(l2norm, l2norm_t))
        # For each anchor, find the hardest positive and negative
        mask = math.equal(
            flow.broadcast_like(targets, like=shape_tensor,
                                broadcast_axes=[1]),
            flow.transpose(flow.broadcast_like(targets,
                                               like=shape_tensor,
                                               broadcast_axes=[1]),
                           perm=(1, 0),
                           batch_axis_non_change=True))
        mask_rev = math.not_equal(
            flow.broadcast_like(targets, like=shape_tensor,
                                broadcast_axes=[1]),
            flow.transpose(flow.broadcast_like(targets,
                                               like=shape_tensor,
                                               broadcast_axes=[1]),
                           perm=(1, 0),
                           batch_axis_non_change=True))
        dist_ap, dist_an = [], []
        for i in range(n):
            temp_dist = flow.slice_v2(dist, [(i, i + 1, 1)])
            temp_mask = flow.slice_v2(mask, [(i, i + 1, 1)])
            temp_mask_rev = flow.slice_v2(mask_rev, [(i, i + 1, 1)])
            temp_dist_ap = flow.expand_dims(
                math.reduce_max(
                    flow.gather_nd(temp_dist, flow.where(temp_mask))), 0)
            temp_dist_an = flow.expand_dims(
                math.reduce_min(
                    flow.gather_nd(temp_dist, flow.where(temp_mask_rev))), 0)
            dist_ap.append(temp_dist_ap)
            dist_an.append(temp_dist_an)
        dist_ap = flow.concat(dist_ap, 0)
        dist_an = flow.concat(dist_an, 0)
        y = flow.ones_like(dist_an)
        return self._MarginRankingLoss(dist_an, dist_ap, y)