Ejemplo n.º 1
0
    def __init__(self,
                 d_model,
                 heads,
                 d_ff,
                 dropout,
                 attention_dropout,
                 self_attn_type="scaled-dot",
                 max_relative_positions=0,
                 aan_useffn=False,
                 full_context_alignment=False,
                 alignment_heads=None):
        super(TransformerDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=dropout,
                max_relative_positions=max_relative_positions)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model,
                                              dropout=attention_dropout,
                                              aan_useffn=aan_useffn)

        self.context_attn = MultiHeadedAttention(heads,
                                                 d_model,
                                                 dropout=attention_dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)
        self.full_context_alignment = full_context_alignment
        self.alignment_heads = alignment_heads
Ejemplo n.º 2
0
    def __init__(self,
                 d_model,
                 heads,
                 d_ff,
                 dropout,
                 attention_dropout,
                 self_attn_type="scaled-dot",
                 max_relative_positions=0,
                 aan_useffn=False,
                 tgt_concept_words_type=-1):
        super(TransformerDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=dropout,
                max_relative_positions=max_relative_positions)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model,
                                              dropout=attention_dropout,
                                              aan_useffn=aan_useffn)

        self.context_attn = MultiHeadedAttention(heads,
                                                 d_model,
                                                 dropout=attention_dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)

        self.tgt_concept_words_type = tgt_concept_words_type
        if tgt_concept_words_type in [2]:
            self.tgt_concept_mlp = nn.Linear(d_model * 2, d_model)
Ejemplo n.º 3
0
    def __init__(self,
                 opt,
                 d_model,
                 heads,
                 d_ff,
                 dropout,
                 attention_dropout,
                 self_attn_type="scaled-dot",
                 max_relative_positions=0,
                 aan_useffn=False,
                 dict_size=None,
                 label_emb=None):
        super(TransformerDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=dropout,
                max_relative_positions=max_relative_positions,
                dict_size=dict_size,
                label_emb=label_emb,
                opt=opt)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model,
                                              dropout=attention_dropout,
                                              aan_useffn=aan_useffn)

        self.context_attn = MultiHeadedAttention(heads,
                                                 d_model,
                                                 dropout=attention_dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)
Ejemplo n.º 4
0
    def __init__(self,
                 d_model,
                 heads,
                 d_ff,
                 dropout,
                 self_attn_type="scaled-dot",
                 max_relative_positions=0):
        super(TransformerDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=dropout,
                max_relative_positions=max_relative_positions)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model, dropout=dropout)

        self.context_attn = MultiHeadedAttention(heads,
                                                 d_model,
                                                 dropout=dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)
Ejemplo n.º 5
0
    def __init__(self,
                 d_model,
                 heads,
                 d_ff,
                 dropout,
                 self_attn_type="scaled-dot"):
        super(TransformerDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(heads,
                                                  d_model,
                                                  dropout=dropout)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model, dropout=dropout)

        self.context_attn = MultiHeadedAttention(heads,
                                                 d_model,
                                                 dropout=dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)
        mask = self._get_attn_subsequent_mask(MAX_SIZE)
        # Register self.mask as a buffer in TransformerDecoderLayer, so
        # it gets TransformerDecoderLayer's cuda behavior automatically.
        self.register_buffer('mask', mask)
    def __init__(self,
                 d_model,
                 heads,
                 d_ff,
                 dropout,
                 attn_dropout,
                 self_attn_type="scaled-dot",
                 max_relative_positions=0,
                 ctx_weight_param=False):
        super(TransformerGPTDecoderLayerCtxattn, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=attn_dropout,
                max_relative_positions=max_relative_positions)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model, dropout=attn_dropout)

        self.context_attn = MultiHeadedAttention(heads,
                                                 d_model,
                                                 dropout=dropout)
        self.feed_forward = MLP(d_model, d_model * 4, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-5)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-5)
        self.context_layer_norm = nn.LayerNorm(d_model, eps=1e-5)
        self.drop = nn.Dropout(dropout)

        if ctx_weight_param:
            print('using ctx_weight_param')
            self.ctx_weight = Parameter(torch.zeros(1))
        self.ctx_weight_param = ctx_weight_param
    def __init__(self,
                 d_model,
                 heads,
                 d_ff,
                 dropout,
                 attn_dropout,
                 self_attn_type="scaled-dot",
                 max_relative_positions=0):
        super(TransformerGPTUnconditionalDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=attn_dropout,
                max_relative_positions=max_relative_positions)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model, dropout=attn_dropout)

        self.feed_forward = MLP(d_model, d_model * 4, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-5)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-5)
        self.drop = nn.Dropout(dropout)
Ejemplo n.º 8
0
class TransformerDecoderLayer(nn.Module):
    """
    Args:
      d_model (int): the dimension of keys/values/queries in
          :class:`MultiHeadedAttention`, also the input size of
          the first-layer of the :class:`PositionwiseFeedForward`.
      heads (int): the number of heads for MultiHeadedAttention.
      d_ff (int): the second-layer of the :class:`PositionwiseFeedForward`.
      dropout (float): dropout probability.
      self_attn_type (string): type of self-attention scaled-dot, average
    """

    def __init__(self, d_model, heads, d_ff, dropout,
                 self_attn_type="scaled-dot", max_relative_positions=0):
        super(TransformerDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads, d_model, dropout=dropout,
                max_relative_positions=max_relative_positions)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model, dropout=dropout)

        self.context_attn = MultiHeadedAttention(
            heads, d_model, dropout=dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)

    def forward(self, inputs, memory_bank, src_pad_mask, tgt_pad_mask,
                layer_cache=None, step=None):
        """
        Args:
            inputs (FloatTensor): ``(batch_size, 1, model_dim)``
            memory_bank (FloatTensor): ``(batch_size, src_len, model_dim)``
            src_pad_mask (LongTensor): ``(batch_size, 1, src_len)``
            tgt_pad_mask (LongTensor): ``(batch_size, 1, 1)``

        Returns:
            (FloatTensor, FloatTensor):

            * output ``(batch_size, 1, model_dim)``
            * attn ``(batch_size, 1, src_len)``

        """
        dec_mask = None
        if step is None:
            tgt_len = tgt_pad_mask.size(-1)
            future_mask = torch.ones(
                [tgt_len, tgt_len],
                device=tgt_pad_mask.device,
                dtype=torch.uint8)
            future_mask = future_mask.triu_(1).view(1, tgt_len, tgt_len)
            dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)

        input_norm = self.layer_norm_1(inputs)

        if isinstance(self.self_attn, MultiHeadedAttention):
            query, attn = self.self_attn(input_norm, input_norm, input_norm,
                                         mask=dec_mask,
                                         layer_cache=layer_cache,
                                         attn_type="self")
        elif isinstance(self.self_attn, AverageAttention):
            query, attn = self.self_attn(input_norm, mask=dec_mask,
                                         layer_cache=layer_cache, step=step)

        query = self.drop(query) + inputs

        query_norm = self.layer_norm_2(query)
        context, attn = self.context_attn(memory_bank, memory_bank, query_norm,
                                      mask=src_pad_mask,
                                      layer_cache=layer_cache,
                                      attn_type="context")
        output = self.feed_forward(self.drop(context) + query)

        return output, attn, context

    def update_dropout(self, dropout):
        self.self_attn.update_dropout(dropout)
        self.context_attn.update_dropout(dropout)
        self.feed_forward.update_dropout(dropout)
        self.drop.p = dropout
Ejemplo n.º 9
0
class TransformerDecoderLayer(nn.Module):
    """
    Args:
      d_model (int): the dimension of keys/values/queries in
          :class:`MultiHeadedAttention`, also the input size of
          the first-layer of the :class:`PositionwiseFeedForward`.
      heads (int): the number of heads for MultiHeadedAttention.
      d_ff (int): the second-layer of the :class:`PositionwiseFeedForward`.
      dropout (float): dropout probability.
      self_attn_type (string): type of self-attention scaled-dot, average
    """
    def __init__(self,
                 d_model,
                 heads,
                 d_ff,
                 dropout,
                 attention_dropout,
                 self_attn_type="scaled-dot",
                 max_relative_positions=0,
                 aan_useffn=False,
                 full_context_alignment=False,
                 alignment_heads=None):
        super(TransformerDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=dropout,
                max_relative_positions=max_relative_positions)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model,
                                              dropout=attention_dropout,
                                              aan_useffn=aan_useffn)

        self.context_attn = MultiHeadedAttention(heads,
                                                 d_model,
                                                 dropout=attention_dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)
        self.full_context_alignment = full_context_alignment
        self.alignment_heads = alignment_heads

    def forward(self, *args, **kwargs):
        """ Extend _forward for (possibly) multiple decoder pass:
        1. Always a default (future masked) decoder forward pass,
        2. Possibly a second future aware decoder pass for joint learn
            full context alignement.

        Args:
            * All arguments of _forward.
            with_align (bool): whether return alignment attention.

        Returns:
            (FloatTensor, FloatTensor, FloatTensor or None):

            * output ``(batch_size, 1, model_dim)``
            * top_attn ``(batch_size, 1, src_len)``
            * attn_align ``(batch_size, 1, src_len)`` or None
        """
        with_align = kwargs.pop('with_align', False)
        output, attns = self._forward(*args, **kwargs)
        top_attn = attns[:, 0, :, :].contiguous()
        attn_align = None
        if with_align:
            if self.full_context_alignment:
                # return _, (B, Q_len, K_len)
                _, attns = self._forward(*args, **kwargs, future=True)

            if self.alignment_heads is not None:
                attns = attns[:, :self.alignment_heads, :, :].contiguous()
            # layer average attention across heads, get ``(B, Q, K)``
            # Case 1: no full_context, no align heads -> layer avg baseline
            # Case 2: no full_context, 1 align heads -> guided align
            # Case 3: full_context, 1 align heads -> full cte guided align
            attn_align = attns.mean(dim=1)
        return output, top_attn, attn_align

    def _forward(self,
                 inputs,
                 memory_bank,
                 src_pad_mask,
                 tgt_pad_mask,
                 layer_cache=None,
                 step=None,
                 future=False):
        """ A naive forward pass for transformer decoder.
        # TODO: change 1 to T as T could be 1 or tgt_len
        Args:
            inputs (FloatTensor): ``(batch_size, 1, model_dim)``
            memory_bank (FloatTensor): ``(batch_size, src_len, model_dim)``
            src_pad_mask (LongTensor): ``(batch_size, 1, src_len)``
            tgt_pad_mask (LongTensor): ``(batch_size, 1, 1)``

        Returns:
            (FloatTensor, FloatTensor):

            * output ``(batch_size, 1, model_dim)``
            * attns ``(batch_size, head, 1, src_len)``

        """
        dec_mask = None

        if step is None:
            tgt_len = tgt_pad_mask.size(-1)
            if not future:  # apply future_mask, result mask in (B, T, T)
                future_mask = torch.ones([tgt_len, tgt_len],
                                         device=tgt_pad_mask.device,
                                         dtype=torch.uint8)
                future_mask = future_mask.triu_(1).view(1, tgt_len, tgt_len)
                # BoolTensor was introduced in pytorch 1.2
                try:
                    future_mask = future_mask.bool()
                except AttributeError:
                    pass
                dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)
            else:  # only mask padding, result mask in (B, 1, T)
                dec_mask = tgt_pad_mask

        input_norm = self.layer_norm_1(inputs)

        if isinstance(self.self_attn, MultiHeadedAttention):
            query, _ = self.self_attn(input_norm,
                                      input_norm,
                                      input_norm,
                                      mask=dec_mask,
                                      layer_cache=layer_cache,
                                      attn_type="self")
        elif isinstance(self.self_attn, AverageAttention):
            query, _ = self.self_attn(input_norm,
                                      mask=dec_mask,
                                      layer_cache=layer_cache,
                                      step=step)
        elif isinstance(self.self_attn, MultiHeadedCausalAttention):
            query, _ = self.self_attn(input_norm,
                                      input_norm,
                                      input_norm,
                                      mask=dec_mask,
                                      layer_cache=layer_cache,
                                      attn_type="self",
                                      decoder=True)

        query = self.drop(query) + inputs

        query_norm = self.layer_norm_2(query)
        mid, attns = self.context_attn(memory_bank,
                                       memory_bank,
                                       query_norm,
                                       mask=src_pad_mask,
                                       layer_cache=layer_cache,
                                       attn_type="context")
        output = self.feed_forward(self.drop(mid) + query)

        return output, attns

    def update_dropout(self, dropout, attention_dropout):
        self.self_attn.update_dropout(attention_dropout)
        self.context_attn.update_dropout(attention_dropout)
        self.feed_forward.update_dropout(dropout)
        self.drop.p = dropout
Ejemplo n.º 10
0
    def __init__(
        self,
        d_model,
        heads,
        d_ff,
        dropout,
        attention_dropout,
        self_attn_type="scaled-dot",
        max_relative_positions=0,
        aan_useffn=False,
        full_context_alignment=False,
        alignment_heads=0,
        pos_ffn_activation_fn=ActivationFunction.relu,
    ):
        """
        Args:
            d_model (int): the dimension of keys/values/queries in
                :class:`MultiHeadedAttention`, also the input size of
                the first-layer of the :class:`PositionwiseFeedForward`.
            heads (int): the number of heads for MultiHeadedAttention.
            d_ff (int): the second-layer of the
                :class:`PositionwiseFeedForward`.
            dropout (float): dropout in residual, self-attn(dot) and
                feed-forward
            attention_dropout (float): dropout in context_attn  (and
                self-attn(avg))
            self_attn_type (string): type of self-attention scaled-dot,
                average
            max_relative_positions (int):
                Max distance between inputs in relative positions
                representations
            aan_useffn (bool): Turn on the FFN layer in the AAN decoder
            full_context_alignment (bool):
                whether enable an extra full context decoder forward for
                alignment
            alignment_heads (int):
                N. of cross attention heads to use for alignment guiding
            pos_ffn_activation_fn (ActivationFunction):
                activation function choice for PositionwiseFeedForward layer

        """
        super(TransformerDecoderLayerBase, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=attention_dropout,
                max_relative_positions=max_relative_positions,
            )
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model,
                                              dropout=attention_dropout,
                                              aan_useffn=aan_useffn)

        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout,
                                                    pos_ffn_activation_fn)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)
        self.full_context_alignment = full_context_alignment
        self.alignment_heads = alignment_heads
Ejemplo n.º 11
0
class TransformerDecoderLayerBase(nn.Module):
    def __init__(
        self,
        d_model,
        heads,
        d_ff,
        dropout,
        attention_dropout,
        self_attn_type="scaled-dot",
        max_relative_positions=0,
        aan_useffn=False,
        full_context_alignment=False,
        alignment_heads=0,
        pos_ffn_activation_fn=ActivationFunction.relu,
    ):
        """
        Args:
            d_model (int): the dimension of keys/values/queries in
                :class:`MultiHeadedAttention`, also the input size of
                the first-layer of the :class:`PositionwiseFeedForward`.
            heads (int): the number of heads for MultiHeadedAttention.
            d_ff (int): the second-layer of the
                :class:`PositionwiseFeedForward`.
            dropout (float): dropout in residual, self-attn(dot) and
                feed-forward
            attention_dropout (float): dropout in context_attn  (and
                self-attn(avg))
            self_attn_type (string): type of self-attention scaled-dot,
                average
            max_relative_positions (int):
                Max distance between inputs in relative positions
                representations
            aan_useffn (bool): Turn on the FFN layer in the AAN decoder
            full_context_alignment (bool):
                whether enable an extra full context decoder forward for
                alignment
            alignment_heads (int):
                N. of cross attention heads to use for alignment guiding
            pos_ffn_activation_fn (ActivationFunction):
                activation function choice for PositionwiseFeedForward layer

        """
        super(TransformerDecoderLayerBase, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=attention_dropout,
                max_relative_positions=max_relative_positions,
            )
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model,
                                              dropout=attention_dropout,
                                              aan_useffn=aan_useffn)

        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout,
                                                    pos_ffn_activation_fn)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)
        self.full_context_alignment = full_context_alignment
        self.alignment_heads = alignment_heads

    def forward(self, *args, **kwargs):
        """Extend `_forward` for (possibly) multiple decoder pass:
        Always a default (future masked) decoder forward pass,
        Possibly a second future aware decoder pass for joint learn
        full context alignement, :cite:`garg2019jointly`.

        Args:
            * All arguments of _forward.
            with_align (bool): whether return alignment attention.

        Returns:
            (FloatTensor, FloatTensor, FloatTensor or None):

            * output ``(batch_size, T, model_dim)``
            * top_attn ``(batch_size, T, src_len)``
            * attn_align ``(batch_size, T, src_len)`` or None
        """
        with_align = kwargs.pop("with_align", False)
        output, attns = self._forward(*args, **kwargs)
        top_attn = attns[:, 0, :, :].contiguous()
        attn_align = None
        if with_align:
            if self.full_context_alignment:
                # return _, (B, Q_len, K_len)
                _, attns = self._forward(*args, **kwargs, future=True)

            if self.alignment_heads > 0:
                attns = attns[:, :self.alignment_heads, :, :].contiguous()
            # layer average attention across heads, get ``(B, Q, K)``
            # Case 1: no full_context, no align heads -> layer avg baseline
            # Case 2: no full_context, 1 align heads -> guided align
            # Case 3: full_context, 1 align heads -> full cte guided align
            attn_align = attns.mean(dim=1)
        return output, top_attn, attn_align

    def update_dropout(self, dropout, attention_dropout):
        self.self_attn.update_dropout(attention_dropout)
        self.feed_forward.update_dropout(dropout)
        self.drop.p = dropout

    def _forward(self, *args, **kwargs):
        raise NotImplementedError

    def _compute_dec_mask(self, tgt_pad_mask, future):
        tgt_len = tgt_pad_mask.size(-1)
        if not future:  # apply future_mask, result mask in (B, T, T)
            future_mask = torch.ones(
                [tgt_len, tgt_len],
                device=tgt_pad_mask.device,
                dtype=torch.uint8,
            )
            future_mask = future_mask.triu_(1).view(1, tgt_len, tgt_len)
            # BoolTensor was introduced in pytorch 1.2
            try:
                future_mask = future_mask.bool()
            except AttributeError:
                pass
            dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)
        else:  # only mask padding, result mask in (B, 1, T)
            dec_mask = tgt_pad_mask
        return dec_mask

    def _forward_self_attn(self, inputs_norm, dec_mask, layer_cache, step):
        if isinstance(self.self_attn, MultiHeadedAttention):
            return self.self_attn(
                inputs_norm,
                inputs_norm,
                inputs_norm,
                mask=dec_mask,
                layer_cache=layer_cache,
                attn_type="self",
            )
        elif isinstance(self.self_attn, AverageAttention):
            return self.self_attn(inputs_norm,
                                  mask=dec_mask,
                                  layer_cache=layer_cache,
                                  step=step)
        else:
            raise ValueError(
                f"self attention {type(self.self_attn)} not supported")
Ejemplo n.º 12
0
class TransformerDecoderLayer(nn.Module):
    """Transformer Decoder layer block in Pre-Norm style.
    Pre-Norm style is an improvement w.r.t. Original paper's Post-Norm style,
    providing better converge speed and performance. This is also the actual
    implementation in tensor2tensor and also avalable in fairseq.
    See https://tunz.kr/post/4 and :cite:`DeeperTransformer`.

    .. mermaid::

        graph LR
        %% "*SubLayer" can be self-attn, src-attn or feed forward block
            A(input) --> B[Norm]
            B --> C["*SubLayer"]
            C --> D[Drop]
            D --> E((+))
            A --> E
            E --> F(out)


    Args:
        d_model (int): the dimension of keys/values/queries in
            :class:`MultiHeadedAttention`, also the input size of
            the first-layer of the :class:`PositionwiseFeedForward`.
        heads (int): the number of heads for MultiHeadedAttention.
        d_ff (int): the second-layer of the :class:`PositionwiseFeedForward`.
        dropout (float): dropout in residual, self-attn(dot) and feed-forward
        attention_dropout (float): dropout in context_attn (and self-attn(avg))
        self_attn_type (string): type of self-attention scaled-dot, average
        max_relative_positions (int):
            Max distance between inputs in relative positions representations
        aan_useffn (bool): Turn on the FFN layer in the AAN decoder
        full_context_alignment (bool):
            whether enable an extra full context decoder forward for alignment
        alignment_heads (int):
            N. of cross attention heads to use for alignment guiding
    """
    def __init__(self,
                 d_model,
                 heads,
                 d_ff,
                 dropout,
                 attention_dropout,
                 self_attn_type="scaled-dot",
                 max_relative_positions=0,
                 aan_useffn=False,
                 full_context_alignment=False,
                 alignment_heads=0):
        super(TransformerDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=attention_dropout,
                max_relative_positions=max_relative_positions)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model,
                                              dropout=attention_dropout,
                                              aan_useffn=aan_useffn)

        self.context_attn = MultiHeadedAttention(heads,
                                                 d_model,
                                                 dropout=attention_dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)
        self.full_context_alignment = full_context_alignment
        self.alignment_heads = alignment_heads

    def forward(self, *args, **kwargs):
        """ Extend `_forward` for (possibly) multiple decoder pass:
        Always a default (future masked) decoder forward pass,
        Possibly a second future aware decoder pass for joint learn
        full context alignement, :cite:`garg2019jointly`.

        Args:
            * All arguments of _forward.
            with_align (bool): whether return alignment attention.

        Returns:
            (FloatTensor, FloatTensor, FloatTensor or None):

            * output ``(batch_size, T, model_dim)``
            * top_attn ``(batch_size, T, src_len)``
            * attn_align ``(batch_size, T, src_len)`` or None
        """
        with_align = kwargs.pop('with_align', False)
        output, attns = self._forward(*args, **kwargs)
        top_attn = attns[:, 0, :, :].contiguous()
        attn_align = None
        if with_align:
            if self.full_context_alignment:
                # return _, (B, Q_len, K_len)
                _, attns = self._forward(*args, **kwargs, future=True)

            if self.alignment_heads > 0:
                attns = attns[:, :self.alignment_heads, :, :].contiguous()
            # layer average attention across heads, get ``(B, Q, K)``
            # Case 1: no full_context, no align heads -> layer avg baseline
            # Case 2: no full_context, 1 align heads -> guided align
            # Case 3: full_context, 1 align heads -> full cte guided align
            attn_align = attns.mean(dim=1)
        return output, top_attn, attn_align

    def _forward(self,
                 inputs,
                 memory_bank,
                 src_pad_mask,
                 tgt_pad_mask,
                 layer_cache=None,
                 step=None,
                 future=False):
        """ A naive forward pass for transformer decoder.

        # T: could be 1 in the case of stepwise decoding or tgt_len

        Args:
            inputs (FloatTensor): ``(batch_size, T, model_dim)``
            memory_bank (FloatTensor): ``(batch_size, src_len, model_dim)``
            src_pad_mask (LongTensor): ``(batch_size, 1, src_len)``
            tgt_pad_mask (LongTensor): ``(batch_size, 1, T)``
            layer_cache (dict or None): cached layer info when stepwise decode
            step (int or None): stepwise decoding counter
            future (bool): If set True, do not apply future_mask.

        Returns:
            (FloatTensor, FloatTensor):

            * output ``(batch_size, T, model_dim)``
            * attns ``(batch_size, head, T, src_len)``

        """
        dec_mask = None

        if step is None:
            tgt_len = tgt_pad_mask.size(-1)
            if not future:  # apply future_mask, result mask in (B, T, T)
                future_mask = torch.ones([tgt_len, tgt_len],
                                         device=tgt_pad_mask.device,
                                         dtype=torch.uint8)
                future_mask = future_mask.triu_(1).view(1, tgt_len, tgt_len)
                # BoolTensor was introduced in pytorch 1.2
                try:
                    future_mask = future_mask.bool()
                except AttributeError:
                    pass
                dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)
            else:  # only mask padding, result mask in (B, 1, T)
                dec_mask = tgt_pad_mask

        input_norm = self.layer_norm_1(inputs)

        if isinstance(self.self_attn, MultiHeadedAttention):
            query, _ = self.self_attn(input_norm,
                                      input_norm,
                                      input_norm,
                                      mask=dec_mask,
                                      layer_cache=layer_cache,
                                      attn_type="self")
        elif isinstance(self.self_attn, AverageAttention):
            query, _ = self.self_attn(input_norm,
                                      mask=dec_mask,
                                      layer_cache=layer_cache,
                                      step=step)

        query = self.drop(query) + inputs

        query_norm = self.layer_norm_2(query)
        mid, attns = self.context_attn(memory_bank,
                                       memory_bank,
                                       query_norm,
                                       mask=src_pad_mask,
                                       layer_cache=layer_cache,
                                       attn_type="context")
        output = self.feed_forward(self.drop(mid) + query)

        return output, attns

    def update_dropout(self, dropout, attention_dropout):
        self.self_attn.update_dropout(attention_dropout)
        self.context_attn.update_dropout(attention_dropout)
        self.feed_forward.update_dropout(dropout)
        self.drop.p = dropout
Ejemplo n.º 13
0
class TransformerDecoderLayer(nn.Module):
    """
    Args:
      d_model (int): the dimension of keys/values/queries in
          :class:`MultiHeadedAttention`, also the input size of
          the first-layer of the :class:`PositionwiseFeedForward`.
      heads (int): the number of heads for MultiHeadedAttention.
      d_ff (int): the second-layer of the :class:`PositionwiseFeedForward`.
      dropout (float): dropout probability.
      self_attn_type (string): type of self-attention scaled-dot, average
    """
    def __init__(self,
                 d_model,
                 heads,
                 d_ff,
                 dropout,
                 attention_dropout,
                 self_attn_type="scaled-dot",
                 max_relative_positions=0,
                 aan_useffn=False,
                 tgt_concept_words_type=-1):
        super(TransformerDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=dropout,
                max_relative_positions=max_relative_positions)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model,
                                              dropout=attention_dropout,
                                              aan_useffn=aan_useffn)

        self.context_attn = MultiHeadedAttention(heads,
                                                 d_model,
                                                 dropout=attention_dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)

        self.tgt_concept_words_type = tgt_concept_words_type
        if tgt_concept_words_type in [2]:
            self.tgt_concept_mlp = nn.Linear(d_model * 2, d_model)

    def forward(self,
                inputs,
                memory_bank,
                src_pad_mask,
                tgt_pad_mask,
                layer_cache=None,
                step=None,
                tgt_concept_words_emb=None,
                tgt_concept_words_type=-1):
        """
        Args:
            inputs (FloatTensor): ``(batch_size, 1, model_dim)``
            memory_bank (FloatTensor): ``(batch_size, src_len, model_dim)``
            src_pad_mask (LongTensor): ``(batch_size, 1, src_len)``
            tgt_pad_mask (LongTensor): ``(batch_size, 1, 1)``

        Returns:
            (FloatTensor, FloatTensor):

            * output ``(batch_size, 1, model_dim)``
            * attn ``(batch_size, 1, src_len)``

        """
        dec_mask = None
        if step is None:
            tgt_len = tgt_pad_mask.size(-1)
            future_mask = torch.ones([tgt_len, tgt_len],
                                     device=tgt_pad_mask.device,
                                     dtype=torch.uint8)
            future_mask = future_mask.triu_(1).view(1, tgt_len, tgt_len)
            # BoolTensor was introduced in pytorch 1.2
            try:
                future_mask = future_mask.bool()
            except AttributeError:
                pass
            dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)

        input_norm = self.layer_norm_1(inputs)

        if isinstance(self.self_attn, MultiHeadedAttention):
            query, attn = self.self_attn(input_norm,
                                         input_norm,
                                         input_norm,
                                         mask=dec_mask,
                                         layer_cache=layer_cache,
                                         attn_type="self")
        elif isinstance(self.self_attn, AverageAttention):
            query, attn = self.self_attn(input_norm,
                                         mask=dec_mask,
                                         layer_cache=layer_cache,
                                         step=step)

        query = self.drop(query) + inputs

        # ablation
        if tgt_concept_words_emb is not None:
            # print(query.shape, tgt_concept_words_emb.shape)
            if self.tgt_concept_words_type == 2:
                query = self.tgt_concept_mlp(
                    torch.cat([query, tgt_concept_words_emb], dim=2))
            if self.tgt_concept_words_type == 3:
                query = (query + tgt_concept_words_emb) / 2

        query_norm = self.layer_norm_2(query)
        mid, attn = self.context_attn(memory_bank,
                                      memory_bank,
                                      query_norm,
                                      mask=src_pad_mask,
                                      layer_cache=layer_cache,
                                      attn_type="context")
        output = self.feed_forward(self.drop(mid) + query)

        return output, attn

    def update_dropout(self, dropout, attention_dropout):
        self.self_attn.update_dropout(attention_dropout)
        self.context_attn.update_dropout(attention_dropout)
        self.feed_forward.update_dropout(dropout)
        self.drop.p = dropout
Ejemplo n.º 14
0
class TransformerDecoderLayer(nn.Module):
    """
    Args:
      d_model (int): the dimension of keys/values/queries in
          :class:`MultiHeadedAttention`, also the input size of
          the first-layer of the :class:`PositionwiseFeedForward`.
      heads (int): the number of heads for MultiHeadedAttention.
      d_ff (int): the second-layer of the :class:`PositionwiseFeedForward`.
      dropout (float): dropout probability.
      self_attn_type (string): type of self-attention scaled-dot, average
    """
    def __init__(self,
                 opt,
                 d_model,
                 heads,
                 d_ff,
                 dropout,
                 attention_dropout,
                 self_attn_type="scaled-dot",
                 max_relative_positions=0,
                 aan_useffn=False,
                 dict_size=None,
                 label_emb=None):
        super(TransformerDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=dropout,
                max_relative_positions=max_relative_positions,
                dict_size=dict_size,
                label_emb=label_emb,
                opt=opt)
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(d_model,
                                              dropout=attention_dropout,
                                              aan_useffn=aan_useffn)

        self.context_attn = MultiHeadedAttention(heads,
                                                 d_model,
                                                 dropout=attention_dropout)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)

    def forward(self,
                inputs,
                memory_bank,
                src_pad_mask,
                tgt_pad_mask,
                layer_cache=None,
                step=None,
                gold_par_attn=None,
                gold_ch_attn=None):
        """
        Args:
            inputs (FloatTensor): ``(batch_size, 1, model_dim)``
            memory_bank (FloatTensor): ``(batch_size, src_len, model_dim)``
            src_pad_mask (LongTensor): ``(batch_size, 1, src_len)``
            tgt_pad_mask (LongTensor): ``(batch_size, 1, 1)``

        Returns:
            (FloatTensor, FloatTensor):

            * output ``(batch_size, 1, model_dim)``
            * attn ``(batch_size, 1, src_len)``

        """
        dec_mask = None
        if step is None:
            tgt_len = tgt_pad_mask.size(-1)
            future_mask = torch.ones([tgt_len, tgt_len],
                                     device=tgt_pad_mask.device,
                                     dtype=torch.uint8)

            future_mask = future_mask.triu_(1).view(1, tgt_len, tgt_len)
            #future_mask = future_mask.triu_(0).view(1, tgt_len, tgt_len)
            #future_mask[0,0,0]=0
            # BoolTensor was introduced in pytorch 1.2
            try:
                future_mask = future_mask.bool()
            except AttributeError:
                pass
            dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)


#        elif step!=0 and synsa:
#            self_mask = torch.zeros(
#                [1,1, step+1],
#                device=tgt_pad_mask.device,
#                dtype=torch.uint8)
#            self_mask[:,:,-1]=1
#            try:
#                self_mask = self_mask.bool()
#            except AttributeError:
#                pass
#            dec_mask = torch.gt(self_mask, 0)

        input_norm = self.layer_norm_1(inputs)
        if isinstance(self.self_attn, MultiHeadedAttention):
            query, tgt_attn, second_attn, ch_labels, par_labels = self.self_attn(
                input_norm,
                input_norm,
                input_norm,
                mask=dec_mask,
                layer_cache=layer_cache,
                attn_type="self",
                gold_par_attn=gold_par_attn,
                gold_ch_attn=gold_ch_attn)
        elif isinstance(self.self_attn, AverageAttention):
            query, attn = self.self_attn(input_norm,
                                         mask=dec_mask,
                                         layer_cache=layer_cache,
                                         step=step)

        query = self.drop(query) + inputs

        query_norm = self.layer_norm_2(query)
        mid, src_attn, _, _, _ = self.context_attn(memory_bank,
                                                   memory_bank,
                                                   query_norm,
                                                   mask=src_pad_mask,
                                                   layer_cache=layer_cache,
                                                   attn_type="context")
        output = self.feed_forward(self.drop(mid) + query)
        return output, src_attn, tgt_attn, second_attn, dec_mask, ch_labels, par_labels

    def update_dropout(self, dropout, attention_dropout):
        self.self_attn.update_dropout(attention_dropout)
        self.context_attn.update_dropout(attention_dropout)
        self.feed_forward.update_dropout(dropout)
        self.drop.p = dropout
Ejemplo n.º 15
0
class TransformerLMDecoderLayer(TransformerDecoderLayerBase):
    """Transformer Decoder only layer block in GPT style.

    .. mermaid::

        graph LR
        %% "*SubLayer" can be self-attn, src-attn or feed forward block
            A(input) --> B[Norm]
            B --> C["*SubLayer"]
            C --> D[Drop]
            D --> E((+))
            A --> E
            E --> F(out)


    Args:
        d_model (int): the dimension of keys/values/queries in
            :class:`MultiHeadedAttention`, also the input size of
            the first-layer of the :class:`PositionwiseFeedForward`.
        heads (int): the number of heads for MultiHeadedAttention.
        d_ff (int): the second-layer of the :class:`PositionwiseFeedForward`.
        dropout (float): dropout in residual, self-attn(dot) and feed-forward
        attention_dropout (float): dropout in context_attn (and self-attn(avg))
        self_attn_type (string): type of self-attention scaled-dot, average
        max_relative_positions (int):
            Max distance between inputs in relative positions representations
        aan_useffn (bool): Turn on the FFN layer in the AAN decoder
        full_context_alignment (bool):
            whether enable an extra full context decoder forward for alignment
        alignment_heads (int):
            N. of cross attention heads to use for alignment guiding
    """

    def __init__(
        self,
        d_model,
        heads,
        d_ff,
        dropout,
        attention_dropout,
        self_attn_type="scaled-dot",
        max_relative_positions=0,
        aan_useffn=False,
        full_context_alignment=False,
        alignment_heads=0,
    ):
        super(TransformerLMDecoderLayer, self).__init__()

        if self_attn_type == "scaled-dot":
            self.self_attn = MultiHeadedAttention(
                heads,
                d_model,
                dropout=attention_dropout,
                max_relative_positions=max_relative_positions,
            )
        elif self_attn_type == "average":
            self.self_attn = AverageAttention(
                d_model, dropout=attention_dropout, aan_useffn=aan_useffn
            )

        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.drop = nn.Dropout(dropout)
        self.full_context_alignment = full_context_alignment
        self.alignment_heads = alignment_heads

    def _forward(
        self, inputs, tgt_pad_mask, layer_cache=None, step=None, future=False
    ):
        """A naive forward pass for transformer decoder.

        # T: could be 1 in the case of stepwise decoding or tgt_len

        Args:
            inputs (FloatTensor): ``(batch_size, T, model_dim)``
            tgt_pad_mask (bool): ``(batch_size, 1, T)``
            layer_cache (dict or None): cached layer info when stepwise decode
            step (int or None): stepwise decoding counter
            future (bool): If set True, do not apply future_mask.

        Returns:
            (FloatTensor, FloatTensor):

            * output ``(batch_size, T, model_dim)``
            * attns ``(batch_size, head, T, T)``

        """
        dec_mask = None

        if step is None:
            tgt_len = tgt_pad_mask.size(-1)
            if not future:  # apply future_mask, result mask in (B, T, T)
                future_mask = torch.ones(
                    [tgt_len, tgt_len],
                    device=tgt_pad_mask.device,
                    dtype=torch.uint8,
                )
                future_mask = future_mask.triu_(1).view(1, tgt_len, tgt_len)
                # BoolTensor was introduced in pytorch 1.2
                try:
                    future_mask = future_mask.bool()
                except AttributeError:
                    pass
                dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)
            else:  # only mask padding, result mask in (B, 1, T)
                dec_mask = tgt_pad_mask

        inputs_norm = self.layer_norm_1(inputs)
        if isinstance(self.self_attn, MultiHeadedAttention):
            query, attns = self.self_attn(
                inputs_norm,
                inputs_norm,
                inputs_norm,
                mask=dec_mask,
                layer_cache=layer_cache,
                attn_type="self",
            )
        elif isinstance(self.self_attn, AverageAttention):
            query, attns = self.self_attn(
                inputs_norm, mask=dec_mask, layer_cache=layer_cache, step=step
            )

        output = self.drop(query) + inputs

        output_feedforward = self.feed_forward(self.layer_norm_2(output))

        output_norm = self.drop(output_feedforward) + output

        return output_norm, attns

    def update_dropout(self, dropout, attention_dropout):
        self.self_attn.update_dropout(attention_dropout)
        self.feed_forward.update_dropout(dropout)
        self.drop.p = dropout