Ejemplo n.º 1
0
 def _provider_name_to_device_type(provider_name):
     if provider_name == 'CPUExecutionProvider':
         return OrtDevice.cpu()
     if provider_name == 'CUDAExecutionProvider':  # pragma: no cover
         return OrtDevice.cuda()
     raise ValueError(  # pragma: no cover
         f'Unexpected provider name {provider_name!r}.')
Ejemplo n.º 2
0
    def device_name(device):
        """
        Returns the device name of a device.

        :param device: OrtDevice
        :return: string
        """
        if device.device_type() == OrtDevice.cpu():
            return 'Cpu'
        if device.device_type() == OrtDevice.cuda():  # pragma: no cover
            return 'Gpu'
        raise RuntimeError(  # pragma: no cover
            f"Unexpected value for device type {device.device_type()!r}.")
Ejemplo n.º 3
0
def get_ort_device_type(device):
    """
    Converts device into device type.

    :param device: string
    :return: device type
    """
    if isinstance(device, str):
        if device == 'cuda':
            return C_OrtDevice.cuda()
        if device == 'cpu':
            return C_OrtDevice.cpu()
        raise ValueError(  # pragma: no cover
            f'Unsupported device type: {device!r}.')
    if not hasattr(device, 'device_type'):
        raise TypeError(f'Unsupported device type: {type(device)!r}.')
    device_type = device.device_type()
    if device_type in ('cuda', 1):
        return C_OrtDevice.cuda()
    if device_type in ('cpu', 0):
        return C_OrtDevice.cpu()
    raise ValueError(  # pragma: no cover
        f'Unsupported device type: {device_type!r}.')
def fcts_model(X, y, n_jobs):
    "LinearRegression."
    model = LinearRegression(n_jobs=n_jobs)
    model.fit(X, y)

    initial_types = [('X', FloatTensorType([None, X.shape[1]]))]
    onx = to_onnx(model,
                  initial_types=initial_types,
                  black_op={'LinearRegressor'})
    sess = InferenceSession(onx.SerializeToString(),
                            providers=['CPUExecutionProvider'])
    outputs = [o.name for o in sess.get_outputs()]
    oinf = OnnxInference(onx, runtime="python")
    bind = SessionIOBinding(sess._sess)
    # ort_device = C_OrtDevice.cpu()
    ort_device = C_OrtDevice(C_OrtDevice.cpu(), C_OrtDevice.default_memory(),
                             0)

    def predict_skl_predict(X, model=model):
        return model.predict(X)

    def predict_onnxrt_predict(X, sess=sess):
        return sess.run(outputs[:1], {'X': X})[0]

    def predict_onnx_inference(X, oinf=oinf):
        return oinf.run({'X': X})["variable"]

    def predict_onnxrt_predict_bind(X,
                                    sess=sess,
                                    bind=bind,
                                    ort_device=ort_device):
        if X.__array_interface__['strides'] is not None:
            raise RuntimeError("onnxruntime only supports contiguous arrays.")
        bind.bind_input('X', ort_device, X.dtype, X.shape,
                        X.__array_interface__['data'][0])
        bind.bind_output('variable', ort_device)
        sess._sess.run_with_iobinding(bind, None)
        ortvalues = bind.get_outputs()
        return ortvalues[0].numpy()

    return {
        'predict': {
            'skl': predict_skl_predict,
            'ort': predict_onnxrt_predict,
            'numpy': predict_onnx_inference,
            'ort-bind': predict_onnxrt_predict_bind
        }
    }
    def test_bind_input_types(self):

        opset = onnx_opset_version()
        devices = [(C_OrtDevice(C_OrtDevice.cpu(), C_OrtDevice.default_memory(), 0), ['CPUExecutionProvider'])]
        if "CUDAExecutionProvider" in onnxrt.get_all_providers():
            devices.append((C_OrtDevice(C_OrtDevice.cuda(), C_OrtDevice.default_memory(), 0), ['CUDAExecutionProvider']))
            
        for device, provider in devices:
            for dtype in [np.float32, np.float64, np.int32, np.uint32,
                          np.int64, np.uint64, np.int16, np.uint16,
                          np.int8, np.uint8, np.float16, np.bool_]:
                with self.subTest(dtype=dtype, device=str(device)):

                    x = np.arange(8).reshape((-1, 2)).astype(dtype)
                    proto_dtype = NP_TYPE_TO_TENSOR_TYPE[x.dtype]

                    X = helper.make_tensor_value_info('X', proto_dtype, [None, x.shape[1]])
                    Y = helper.make_tensor_value_info('Y', proto_dtype, [None, x.shape[1]])

                    # inference
                    node_add = helper.make_node('Identity', ['X'], ['Y'])

                    # graph
                    graph_def = helper.make_graph([node_add], 'lr', [X], [Y], [])
                    model_def = helper.make_model(
                        graph_def, producer_name='dummy', ir_version=7,
                        producer_version="0",
                        opset_imports=[helper.make_operatorsetid('', opset)])

                    sess = onnxrt.InferenceSession(model_def.SerializeToString(), providers=provider)

                    bind = SessionIOBinding(sess._sess)
                    ort_value = C_OrtValue.ortvalue_from_numpy(x, device)
                    bind.bind_ortvalue_input('X', ort_value)
                    bind.bind_output('Y', device)
                    sess._sess.run_with_iobinding(bind, None)
                    ortvalue = bind.get_outputs()[0]
                    y = ortvalue.numpy()
                    assert_almost_equal(x, y)

                    bind = SessionIOBinding(sess._sess)
                    bind.bind_input('X', device, dtype, x.shape, ort_value.data_ptr())
                    bind.bind_output('Y', device)
                    sess._sess.run_with_iobinding(bind, None)
                    ortvalue = bind.get_outputs()[0]
                    y = ortvalue.numpy()
                    assert_almost_equal(x, y)
Ejemplo n.º 6
0
def benchmark(name,
              onx,
              fct_numpy,
              *args,
              dims=(1, 10, 100, 200, 500, 1000, 2000, 10000)):
    sess = InferenceSession(onx.SerializeToString())
    device = C_OrtDevice(C_OrtDevice.cpu(), C_OrtDevice.default_memory(), 0)
    names = [i.name for i in sess.get_inputs()]
    out_names = [o.name for o in sess.get_outputs()]
    if len(names) != len(args):
        raise RuntimeError(f"Size mismatch {len(names)} != {len(args)}.")

    rows = []
    for dim in tqdm(dims):
        new_args = [reshape(a, dim) for a in args]
        ortvalues = [
            C_OrtValue.ortvalue_from_numpy(a, device) for a in new_args
        ]

        ms = measure_time(lambda: fct_numpy(*new_args), repeat=50, number=100)
        ms.update(dict(name=name, impl='numpy', dim=dim))
        rows.append(ms)

        inps = {n: a for n, a in zip(names, new_args)}
        ms = measure_time(lambda: sess.run(None, inps))
        ms.update(dict(name=name, impl='sess', dim=dim))
        rows.append(ms)

        bind = SessionIOBinding(sess._sess)
        ms = measure_time(lambda: bind_and_run(sess._sess, bind, names,
                                               ortvalues, out_names, device))
        ms.update(dict(name=name, impl='bind_run', dim=dim))
        rows.append(ms)

        ms = measure_time(lambda: nobind_just_run(sess._sess, bind))
        ms.update(dict(name=name, impl='run', dim=dim))
        rows.append(ms)

    return rows
Ejemplo n.º 7
0
def get_ort_device(device):
    """
    Converts device into :epkg:`C_OrtDevice`.

    :param device: any type
    :return: :epkg:`C_OrtDevice`

    Example:

    ::

        get_ort_device('cpu')
        get_ort_device('gpu')
        get_ort_device('cuda')
        get_ort_device('cuda:0')
    """
    if isinstance(device, C_OrtDevice):
        return device
    if isinstance(device, str):
        if device == 'cpu':
            return C_OrtDevice(C_OrtDevice.cpu(), C_OrtDevice.default_memory(),
                               0)
        if device in {'gpu', 'cuda:0', 'cuda', 'gpu:0'}:
            return C_OrtDevice(C_OrtDevice.cuda(),
                               C_OrtDevice.default_memory(), 0)
        if device.startswith('gpu:'):
            idx = int(device[4:])
            return C_OrtDevice(C_OrtDevice.cuda(),
                               C_OrtDevice.default_memory(), idx)
        if device.startswith('cuda:'):
            idx = int(device[5:])
            return C_OrtDevice(C_OrtDevice.cuda(),
                               C_OrtDevice.default_memory(), idx)
        raise ValueError(  # pragma: no cover
            "Unable to interpret string %r as a device." % device)
    raise TypeError(  # pragma: no cover
        "Unable to interpret type %r, (%r) as de device." %
        (type(device), device))
Ejemplo n.º 8
0
def ort_device_to_string(device):
    """
    Returns a string representing the device.
    Opposite of function @see fn get_ort_device.

    :param device: see :epkg:`C_OrtDevice`
    :return: string
    """
    if not isinstance(device, C_OrtDevice):
        raise TypeError(
            f"device must be of type C_OrtDevice not {type(device)!r}.")
    ty = device.device_type()
    if ty == C_OrtDevice.cpu():
        sty = 'cpu'
    elif ty == C_OrtDevice.cuda():
        sty = 'cuda'
    else:
        raise NotImplementedError(  # pragma: no cover
            f"Unable to guess device for {device!r} and type={ty!r}.")
    idx = device.device_id()
    if idx == 0:
        return sty
    return "%s:%d" % (sty, idx)
    def forward_no_training(self, exc=None, verbose=False):
        if exc is None:
            exc = __name__ != '__main__'
        from onnxruntime.capi._pybind_state import (OrtValue as C_OrtValue,
                                                    OrtDevice as C_OrtDevice,
                                                    OrtMemType)
        from onnxruntime.capi._pybind_state import (OrtValueVector)
        from onnxcustom.training.ortgradient import OrtGradientForwardBackward

        X, y = make_regression(  # pylint: disable=W0632
            100, n_features=10, bias=2)
        X = X.astype(numpy.float32)
        y = y.astype(numpy.float32)
        X_train, X_test, y_train, _ = train_test_split(X, y)
        reg = LinearRegression()
        reg.fit(X_train, y_train)
        reg.coef_ = reg.coef_.reshape((1, -1))
        onx = to_onnx(reg,
                      X_train,
                      target_opset=opset,
                      black_op={'LinearRegressor'})

        # starts testing
        if verbose:
            print("[forward_no_training] start testing")
        if exc:
            if verbose:
                print("[forward_no_training] check exception")
            self.assertRaise(
                lambda: OrtGradientForwardBackward(
                    onx, debug=True, enable_logging=True, providers=['NONE']),
                ValueError)
        if verbose:
            print("[forward_no_training] instantiate")
        forback = OrtGradientForwardBackward(onx,
                                             debug=True,
                                             enable_logging=True)
        self.assertEqual(repr(forback), "OrtGradientForwardBackward(...)")
        self.assertTrue(hasattr(forback, 'cls_type_'))
        self.assertEqual(forback.cls_type_._onx_inp,
                         ['X', 'coef', 'intercept'])
        self.assertEqual(forback.cls_type_._onx_out,
                         ['X_grad', 'coef_grad', 'intercept_grad'])
        self.assertEqual(forback.cls_type_._weights_to_train,
                         ['coef', 'intercept'])
        self.assertEqual(forback.cls_type_._grad_input_names,
                         ['X', 'coef', 'intercept'])
        self.assertEqual(forback.cls_type_._input_names, ['X'])
        self.assertEqual(forback.cls_type_._bw_fetches_names,
                         ['X_grad', 'coef_grad', 'intercept_grad'])
        self.assertEqual(forback.cls_type_._output_names, ['variable'])

        if verbose:
            print("[forward_no_training] expected prediction")

        expected = reg.predict(X_test)
        coef = reg.coef_.astype(numpy.float32).reshape((-1, 1))
        intercept = numpy.array([reg.intercept_], dtype=numpy.float32)

        if verbose:
            print("[forward_no_training] InferenceSession")

        providers = device_to_providers('cpu')
        sess0 = InferenceSession(onx.SerializeToString(), providers=providers)
        inames = [i.name for i in sess0.get_inputs()]  # pylint: disable=E1101
        self.assertEqual(inames, ['X'])
        got = sess0.run(None, {'X': X_test})
        self.assertEqualArray(expected.ravel(), got[0].ravel(), decimal=4)

        if verbose:
            print("[forward_no_training] evaluation")

        sess_eval = forback.cls_type_._sess_eval  # pylint: disable=E1101
        inames = [i.name for i in sess_eval.get_inputs()]
        self.assertEqual(inames, ['X', 'coef', 'intercept'])
        got = sess_eval.run(None, {
            'X': X_test,
            'coef': coef,
            'intercept': intercept
        })
        self.assertEqualArray(expected.ravel(), got[0].ravel(), decimal=4)

        # OrtValue
        if verbose:
            print("[forward_no_training] OrtValue")
        inst = forback.new_instance()
        device = C_OrtDevice(C_OrtDevice.cpu(), OrtMemType.DEFAULT, 0)

        # list of OrtValues
        inputs = []
        for a in [X_test, coef, intercept]:
            inputs.append(C_OrtValue.ortvalue_from_numpy(a, device))
        got_ort = inst.forward(inputs)
        got = [v.numpy() for v in got_ort]
        self.assertEqual(len(got), 1)
        self.assertEqualArray(expected.ravel(), got[0].ravel(), decimal=4)

        # OrtValueVector
        if verbose:
            print("[forward_no_training] OrtValueVector")
        inputs = OrtValueVector()
        for a in [X_test, coef, intercept]:
            inputs.push_back(C_OrtValue.ortvalue_from_numpy(a, device))
        got = inst.forward(inputs)
        self.assertEqual(len(got), 1)
        self.assertEqualArray(expected.ravel(),
                              got[0].numpy().ravel(),
                              decimal=4)

        # numpy
        if verbose:
            print("[forward_no_training] numpy")
        inputs = [X_test, coef, intercept]
        got = inst.forward(inputs)
        self.assertEqual(len(got), 1)
        self.assertEqualArray(expected.ravel(),
                              got[0].numpy().ravel(),
                              decimal=4)
        if verbose:
            print("[forward_no_training] end")
    def forward_training(self,
                         model,
                         debug=False,
                         n_classes=3,
                         add_print=False):
        from onnxruntime.capi._pybind_state import (OrtValue as C_OrtValue,
                                                    OrtMemType, OrtDevice as
                                                    C_OrtDevice)
        from onnxruntime.capi._pybind_state import (OrtValueVector)
        from onnxcustom.training.ortgradient import OrtGradientForwardBackward

        def to_proba(yt):
            mx = yt.max() + 1
            new_yt = numpy.zeros((yt.shape[0], mx), dtype=numpy.float32)
            for i, y in enumerate(yt):
                new_yt[i, y] = 1
            return new_yt

        if hasattr(model.__class__, 'predict_proba'):
            X, y = make_classification(  # pylint: disable=W0632
                100,
                n_features=10,
                n_classes=n_classes,
                n_informative=7)
            X = X.astype(numpy.float32)
            y = y.astype(numpy.int64)
        else:
            X, y = make_regression(  # pylint: disable=W0632
                100, n_features=10, bias=2)
            X = X.astype(numpy.float32)
            y = y.astype(numpy.float32)
        X_train, X_test, y_train, y_test = train_test_split(X, y)
        reg = model
        reg.fit(X_train, y_train)
        # needs if skl2onnx<1.10.4
        # reg.coef_ = reg.coef_.reshape((1, -1))
        # reg.intercept_ = reg.intercept_.reshape((-1, ))
        if hasattr(model.__class__, 'predict_proba'):
            onx = to_onnx(reg,
                          X_train,
                          target_opset=opset,
                          black_op={'LinearClassifier'},
                          options={'zipmap': False})
            onx = select_model_inputs_outputs(
                onx, outputs=[onx.graph.output[1].name])
        else:
            onx = to_onnx(reg,
                          X_train,
                          target_opset=opset,
                          black_op={'LinearRegressor'})

        # remove batch possibility
        #onx.graph.input[0].type.tensor_type.shape.dim[0].dim_value = 0
        #onx.graph.input[0].type.tensor_type.shape.dim[0].dim_param = "batch_size"
        #onx.graph.output[0].type.tensor_type.shape.dim[0].dim_value = 0
        #onx.graph.output[0].type.tensor_type.shape.dim[0].dim_param = "batch_size"
        providers = device_to_providers('cpu')
        sess = InferenceSession(onx.SerializeToString(), providers=providers)
        sess.run(None, {'X': X_test[:1]})

        # starts testing
        forback = OrtGradientForwardBackward(onx,
                                             debug=True,
                                             enable_logging=True)
        if debug:
            n = model.__class__.__name__
            temp = get_temp_folder(__file__, f"temp_forward_training_{n}")
            with open(os.path.join(temp, f"model_{n}.onnx"), "wb") as f:
                f.write(onx.SerializeToString())
            with open(os.path.join(temp, f"fw_train_{n}.onnx"), "wb") as f:
                f.write(forback.cls_type_._trained_onnx.SerializeToString())
            with open(os.path.join(temp, f"fw_pre_{n}.onnx"), "wb") as f:
                gr = forback.cls_type_._optimized_pre_grad_model
                f.write(gr.SerializeToString())

        if hasattr(model.__class__, 'predict_proba'):
            expected = reg.predict_proba(X_test)
            coef = reg.coef_.astype(numpy.float32).T
            intercept = reg.intercept_.astype(numpy.float32)
            # only one observation
            X_test1 = X_test[:1]
            y_test = to_proba(y_test).astype(numpy.float32)
            y_test1 = y_test[:1]
            expected1 = expected[:1]
        else:
            expected = reg.predict(X_test)
            coef = reg.coef_.astype(numpy.float32).reshape((-1, 1))
            intercept = numpy.array([reg.intercept_], dtype=numpy.float32)
            # only one observation
            X_test1 = X_test[:1]
            y_test1 = y_test[0].reshape((1, -1))
            expected1 = expected[:1]

        # OrtValueVector
        inst = forback.new_instance()
        device = C_OrtDevice(C_OrtDevice.cpu(), OrtMemType.DEFAULT, 0)

        if add_print:
            print("\n\n######################\nFORWARD")
        inputs = OrtValueVector()
        for a in [X_test1, coef, intercept]:
            inputs.push_back(C_OrtValue.ortvalue_from_numpy(a, device))
        got = inst.forward(inputs, training=True)
        self.assertEqual(len(got), 1)
        self.assertEqualArray(expected1.ravel(),
                              got[0].numpy().ravel(),
                              decimal=4)

        if add_print:
            print("\n\n######################\nBACKWARD")
        outputs = OrtValueVector()
        outputs.push_back(C_OrtValue.ortvalue_from_numpy(y_test1, device))
        got = inst.backward(outputs)
        self.assertEqual(len(got), 3)
        if add_print:
            print("\n######################\nEND\n")

        # OrtValueVectorN
        inputs = OrtValueVector()
        for a in [X_test, coef, intercept]:
            inputs.push_back(C_OrtValue.ortvalue_from_numpy(a, device))
        got = inst.forward(inputs, training=True)
        self.assertEqual(len(got), 1)
        self.assertEqualArray(expected.ravel(),
                              got[0].numpy().ravel(),
                              decimal=4)

        outputs = OrtValueVector()
        outputs.push_back(
            C_OrtValue.ortvalue_from_numpy(y_test.reshape((1, -1)), device))
        got = inst.backward(outputs)
        self.assertEqual(len(got), 3)

        # list of OrtValues
        inputs = []
        for a in [X_test, coef, intercept]:
            inputs.append(C_OrtValue.ortvalue_from_numpy(a, device))
        got_ort = inst.forward(inputs, training=True)
        got = [v.numpy() for v in got_ort]
        self.assertEqual(len(got), 1)
        self.assertEqualArray(expected.ravel(), got[0].ravel(), decimal=4)

        outputs = [
            C_OrtValue.ortvalue_from_numpy(y_test.reshape((1, -1)), device)
        ]
        got = inst.backward(outputs)
        self.assertEqual(len(got), 3)

        # numpy
        inputs = [X_test, coef, intercept]
        got_ort = inst.forward(inputs, training=True)
        got = [v.numpy() for v in got_ort]
        self.assertEqual(len(got), 1)
        self.assertEqualArray(expected.ravel(), got[0].ravel(), decimal=4)

        outputs = [y_test.reshape((1, -1))]
        got = inst.backward(outputs)
        self.assertEqual(len(got), 3)
    def test_forward_no_training_pickle(self):
        from onnxruntime.capi._pybind_state import (OrtValue as C_OrtValue,
                                                    OrtMemType, OrtDevice as
                                                    C_OrtDevice)
        from onnxruntime.capi._pybind_state import (OrtValueVector)
        from onnxcustom.training.ortgradient import OrtGradientForwardBackward
        X, y = make_regression(  # pylint: disable=W0632
            100, n_features=10, bias=2)
        X = X.astype(numpy.float32)
        y = y.astype(numpy.float32)
        X_train, X_test, y_train, _ = train_test_split(X, y)
        reg = LinearRegression()
        reg.fit(X_train, y_train)
        reg.coef_ = reg.coef_.reshape((1, -1))
        onx = to_onnx(reg,
                      X_train,
                      target_opset=opset,
                      black_op={'LinearRegressor'})
        forback0 = OrtGradientForwardBackward(onx, debug=True)
        st = io.BytesIO()
        pickle.dump(forback0, st)
        st2 = io.BytesIO(st.getvalue())
        forback = pickle.load(st2)

        self.assertTrue(hasattr(forback, 'cls_type_'))
        self.assertEqual(forback.cls_type_._onx_inp,
                         ['X', 'coef', 'intercept'])
        self.assertEqual(forback.cls_type_._onx_out,
                         ['X_grad', 'coef_grad', 'intercept_grad'])
        self.assertEqual(forback.cls_type_._weights_to_train,
                         ['coef', 'intercept'])
        self.assertEqual(forback.cls_type_._grad_input_names,
                         ['X', 'coef', 'intercept'])
        self.assertEqual(forback.cls_type_._input_names, ['X'])
        self.assertEqual(forback.cls_type_._bw_fetches_names,
                         ['X_grad', 'coef_grad', 'intercept_grad'])
        self.assertEqual(forback.cls_type_._output_names, ['variable'])

        expected = reg.predict(X_test)
        coef = reg.coef_.astype(numpy.float32).reshape((-1, 1))
        intercept = numpy.array([reg.intercept_], dtype=numpy.float32)

        providers = device_to_providers('cpu')
        sess0 = InferenceSession(onx.SerializeToString(), providers=providers)
        inames = [i.name for i in sess0.get_inputs()]
        self.assertEqual(inames, ['X'])
        got = sess0.run(None, {'X': X_test})
        self.assertEqualArray(expected.ravel(), got[0].ravel(), decimal=4)

        sess_eval = forback.cls_type_._sess_eval  # pylint: disable=W0212
        inames = [i.name for i in sess_eval.get_inputs()]
        self.assertEqual(inames, ['X', 'coef', 'intercept'])
        got = sess_eval.run(None, {
            'X': X_test,
            'coef': coef,
            'intercept': intercept
        })
        self.assertEqualArray(expected.ravel(), got[0].ravel(), decimal=4)

        # OrtValue
        inst = forback.new_instance()
        inputs = []
        device = C_OrtDevice(C_OrtDevice.cpu(), OrtMemType.DEFAULT, 0)
        for a in [X_test, coef, intercept]:
            inputs.append(C_OrtValue.ortvalue_from_numpy(a, device))
        got_ort = inst.forward(inputs)
        got = [v.numpy() for v in got_ort]
        self.assertEqual(len(got), 1)
        self.assertEqualArray(expected.ravel(), got[0].ravel(), decimal=4)

        # OrtValueVector
        inputs = OrtValueVector()
        for a in [X_test, coef, intercept]:
            inputs.push_back(C_OrtValue.ortvalue_from_numpy(a, device))
        got = inst.forward(inputs)
        self.assertEqual(len(got), 1)
        self.assertEqualArray(expected.ravel(),
                              got[0].numpy().ravel(),
                              decimal=4)

        # numpy
        inputs = [X_test, coef, intercept]
        got = inst.forward(inputs)
        self.assertEqual(len(got), 1)
        self.assertEqualArray(expected.ravel(),
                              got[0].numpy().ravel(),
                              decimal=4)
Ejemplo n.º 12
0
#################################
# Profiling
# +++++++++
#
# Let's choose the device available on this machine.
# batch dimension is set to 10.

batch = 10

if get_device().upper() == 'GPU':
    ort_device = C_OrtDevice(C_OrtDevice.cuda(), C_OrtDevice.default_memory(),
                             0)
    provider = 'CUDAExecutionProvider'
else:
    ort_device = C_OrtDevice(C_OrtDevice.cpu(), C_OrtDevice.default_memory(),
                             0)
    provider = 'CPUExecutionProvider'

print(f"provider = {provider!r}")

####################################
# We load the graph.

with open(filename, 'rb') as f:
    onx = onnx.load(f)

###############################
# Create of the session.

so = SessionOptions()
Ejemplo n.º 13
0
print('ort-c')
sess = InferenceSession(onx.SerializeToString(),
                        providers=['CPUExecutionProvider'])
ro = RunOptions()
output_names = [o.name for o in sess.get_outputs()]
obs = measure_time(lambda: sess._sess.run(output_names, {'X': X}, ro),
                   context=dict(sess=sess, X=X),
                   repeat=repeat,
                   number=number)
obs['name'] = 'ort-c'
data.append(obs)

###################################
# onnxruntime: run_with_ort_values
print('ort-ov-c')
device = C_OrtDevice(C_OrtDevice.cpu(), OrtMemType.DEFAULT, 0)

Xov = C_OrtValue.ortvalue_from_numpy(X, device)

sess = InferenceSession(onx.SerializeToString(),
                        providers=['CPUExecutionProvider'])
ro = RunOptions()
output_names = [o.name for o in sess.get_outputs()]
obs = measure_time(
    lambda: sess._sess.run_with_ort_values({'X': Xov}, output_names, ro),
    context=dict(sess=sess),
    repeat=repeat,
    number=number)
obs['name'] = 'ort-ov'
data.append(obs)