Ejemplo n.º 1
0
    def zeros_for(self, mimic_sym, right=False):
        """Create a constant that when [left, right] multiplied onto mimic_sym, gives zeros.

        If `right`, it is as though the constant were multiplied on the *right*
        If `left`, it is as though the constant were multiplied on the *left*
        """
        props = self.get_properties(mimic_sym)
        if props['type'] == 'matrix':
            dim = props['dim']
            if right:
                return op_defs.Constant(op_defs.create_matrix((dim[1], dim[1])), 'zero')
            else:
                return op_defs.Constant(op_defs.create_matrix((dim[0], dim[0])), 'zero')
        else:
            return self.constant_like(mimic_sym, 'zero')
Ejemplo n.º 2
0
 def zeros_between(self, from_sym, to_sym):
     self._needs_vector(from_sym)
     self._needs_vector(to_sym)
     return op_defs.Constant(
         op_defs.create_matrix(
             self.cross_dim(from_sym, to_sym)
         )
     )
Ejemplo n.º 3
0
    def forward_mode_differentiate(self, wrt):
        """Differentiate the graph with respect to wrt

        "wrt" -> "w.r.t" -> "with respect to" in case you are a goober
        """
        self._needs_input(wrt)
        inv_adj = self._inverse_adjacency()

        diffed = {}
        for inp in get_inputs(self):
            diffed[inp] = self.zeros_for(inp, right=False)
        diffed[wrt] = self.identity_for(wrt, right=False)

        to_diff = deque()
        to_diff.extend(inv_adj[wrt])
        while(len(to_diff)):
            td = to_diff.popleft()
            if td in diffed.keys():
                continue

            op = self._adj[td]
            Log.success('To diff', td)
            if op is not None:
                args = get_args(op)
                arg_types = self._types(args)
                df = self._d_table[get_opname(op)][arg_types]
                df_dx_summands = []
                for n, df_darg in enumerate(df):
                    df_du_sexpr = df_darg['generate'](*args)
                    df_du_sym = s_expressions.apply_s_expression(self, df_du_sexpr, self.anon())
                    if self.is_constant(args[n]):
                        du_dx = op_defs.Constant(self.get_properties(args[n]), 'zero')
                    else:
                        Log.warn("d-d", args[n], self.get_properties(args[n]))
                        du_dx = diffed[args[n]]

                    Log.warn(df_du_sym, du_dx)
                    Log.warn(self.get_properties(df_du_sym), self.get_properties(du_dx))
                    df_dx_summands.append(self._anony_call('mul', df_du_sym, du_dx))

                if td in self._outputs:
                    df_dx_sym = 'd{}_d{}'.format(td, wrt)
                else:
                    df_dx_sym = self.anon()

                if df_dx_sym not in self._adj:
                    for sm in df_dx_summands:
                        Log.warn("  sm:", sm, self.get_properties(sm))

                    total = self.reduce_binary_op('add', df_dx_sym, df_dx_summands)
                else:
                    total = df_dx_sym
                diffed[td] = total
Ejemplo n.º 4
0
def scalar_difftest():
    gr = OpGraph('DifferentationGraph')
    gr.scalar('x1')
    gr.scalar('x2')

    a = gr.mul(gr.anon(), 'x1', op_defs.Constant(op_defs.create_scalar(), 'I'))
    # a = gr.mul(gr.anon(), 'x1', 'x1')
    b = gr.mul(gr.anon(), a, 'x1')
    gr.add('c', b, 'x2')
    gr.output('c')

    gr.forward_mode_differentiate('x1')
    print '--------\n\n'
    print gr.arrows(skip_uniques=True)
    gr.simplify()
    print '\n'
    print gr.arrows(skip_uniques=True)

    gr.simplify()
    print gr.arrows(skip_uniques=True)
Ejemplo n.º 5
0
 def constant_scalar(self, name, value):
     props = op_defs.create_scalar()
     constant = op_defs.Constant(props, value)
     self._adj[name] = self._op('I', constant)
     self._properties[name] = props
     return name
Ejemplo n.º 6
0
 def constant_vector(self, name, dim, value):
     props = op_defs.create_vector(dim)
     constant = op_defs.Constant(props, value)
     self._adj[name] = self._op('I', constant)
     self._properties[name] = props
     return name
Ejemplo n.º 7
0
 def constant_like(self, mimic_sym, value):
     return op_defs.Constant(self.get_properties(mimic_sym), value)