Ejemplo n.º 1
0
def runtimesAbel(nArray, nMeasure, method, order):

    runtimes = np.zeros(nArray.shape[0])
    runtimesPre = np.zeros(nArray.shape[0])

    for ii in range(nArray.shape[0]):

        dataIn = np.ones(nArray[ii])
        T = np.empty(nMeasure)
        for jj in range(nMeasure):
            t0 = ti.time()
            abelObj = oa.Abel(nArray[ii], 1, 0., 1., method = method, order = order)
            t1 = ti.time()
            T[jj] = t1-t0
        runtimesPre[ii] = np.sum(T)/nMeasure

        abelObj = oa.Abel(nArray[ii], 1, 0., 1., method = method, order = order)
        t0 = ti.time()
        for jj in range(nMeasure):
            dataOut = abelObj.execute(dataIn)
        t1 = ti.time()

        runtimes[ii] = (t1-t0)/nMeasure

    return (runtimesPre, runtimes)
Ejemplo n.º 2
0
def errorAbel(nData, method, order):

    dx = 1./(nData-1);
    xx = np.linspace(0., 1., nData)

    dataIn = 3./8.*np.pi*(1-xx**2)**2
    dataAna = np.sqrt(1-xx**2)**3
    abelObj = oa.Abel(nData, 1, 0., dx, method = method, order = order)
    dataOut = abelObj.execute(dataIn)
    abserr = dataOut-dataAna
    relerr = np.abs(abserr/np.clip(dataAna, 1.e-300, None))

    return (xx, abserr, relerr, dataOut, dataAna)
Ejemplo n.º 3
0
def convergenceAbel(nArray, method, order):

    conv = np.empty(nArray.shape[0])
    for ii in range(nArray.shape[0]):

        nData = nArray[ii]
        dx = 1./(nData-1);
        xx = np.linspace(0., 1., nData)
        
        dataIn = 3./8.*np.pi*(1-xx**2)**2
        abelObj = oa.Abel(nData, 1, 0., dx, method = method, order = order)
        dataOut = abelObj.execute(dataIn)
        dataAna = np.sqrt(1-xx**2)**3

        conv[ii] = np.sqrt(np.sum(((dataOut[:-1]-dataAna[:-1])/dataAna[:-1])**2)/(nData-1))

    return conv
Ejemplo n.º 4
0
def errorAbel(nData, method, order):

    dx = 1. / (nData - 1)
    xx = np.linspace(0., 1., nData)
    sig = 1. / 3.

    dataIn = 1. / sig / np.sqrt(2 * np.pi) * np.exp(-0.5 * xx**2 / sig**2)

    dataAna = 2.*1./sig/np.sqrt(2*np.pi)*np.exp(-0.5*xx**2/sig**2) * \
              np.sqrt(np.pi/2.)*sig*erf(np.sqrt(1**2-xx**2)/np.sqrt(2.)/sig)

    abelObj = oa.Abel(nData, -1, 0., dx, method=method, order=order)
    dataOut = abelObj.execute(dataIn)

    abserr = dataOut - dataAna
    relerr = np.abs(abserr / np.clip(dataAna, 1.e-300, None))

    return (xx, abserr, relerr, dataOut, dataAna)
Ejemplo n.º 5
0
def convergenceAbel(nArray, method, order):

    conv = np.empty(nArray.shape[0])
    for ii in range(nArray.shape[0]):

        nData = nArray[ii]
        dx = 1. / (nData - 1)
        xx = np.linspace(0., 1., nData)
        sig = 1. / 3.

        dataIn = 1. / sig / np.sqrt(2 * np.pi) * np.exp(-0.5 * xx**2 / sig**2)

        abelObj = oa.Abel(nData, -1, 0., dx, method=method, order=order)
        dataOut = abelObj.execute(dataIn)

        dataAna = 2./sig/np.sqrt(2*np.pi)*np.exp(-0.5*xx**2/sig**2) * \
                     np.sqrt(np.pi/2.)*sig*erf(np.sqrt(1**2-xx**2)/np.sqrt(2.)/sig)
        conv[ii] = np.sqrt(
            np.sum(
                ((dataOut - dataAna) / np.clip(dataAna, 1.e-300, None))**2) /
            nData)

    return conv
Ejemplo n.º 6
0
def helper_test_method(nData, forwardBackward, shift, methods, orders, rtol):

    for method, order in it.product(methods, orders):
        xMax = 3.5
        sig = 1.
        stepSize = xMax / (nData - 1)

        abelObj = oa.Abel(nData,
                          forwardBackward,
                          shift,
                          stepSize,
                          method=method,
                          order=order)

        xx = np.linspace(shift * stepSize, xMax, nData)

        dataIn = np.exp(-0.5 * xx**2 / sig**2)
        if forwardBackward == -1:
            dataOutAna = dataIn * np.sqrt(2 * np.pi) * sig * erf(
                np.sqrt((xMax**2 - xx**2) / 2) / sig)
        elif forwardBackward == 1:
            dataOutAna = dataIn / np.sqrt(2 * np.pi) / sig * erf(
                np.sqrt((xMax**2 - xx**2) / 2) / sig)
        elif forwardBackward == 2:
            dataOutAna = dataIn / np.sqrt(2 * np.pi) / sig * erf(
                np.sqrt((xMax**2 - xx**2) / 2) / sig)
            dataIn = -xx / sig**2 * np.exp(-0.5 * xx**2 / sig**2)
        else:
            raise NotImplementedError('Test not implemented.')

        dataOut = abelObj.execute(dataIn)

        assert dataOut[-1] == 0.
        np.testing.assert_allclose(dataOut[:-1], dataOutAna[:-1], rtol=rtol)

    return None
# Line styles 
linestyles = ['-', '--', '-.', ':','-', '--', '-.', ':','-', '--', '-.', ':']
lw = 2

############################################################################################################################################

# Parameters
nData = 40
shift = 0.
xMax = 3.5
sig = 1.
stepSize = xMax/(nData-1)
forwardBackward = -1    # Forward transform, similar definition ('-1' = forward) as in FFT libraries.

# Create Abel transform object, which does all precomputation possible without knowing the exact data. 
abelObj = openAbel.Abel(nData, forwardBackward, shift, stepSize)    

# Input data
xx = np.linspace(shift*stepSize, xMax, nData)
dataIn = np.exp(-0.5*xx**2/sig**2)

# Forward Abel transform and analytical result.
# We show both the analytical result of a truncated Gaussian and a standard Gaussian to show
# that some error is due to truncation.
dataOut = abelObj.execute(dataIn)
dataOutAna = dataIn*np.sqrt(2*np.pi)*sig
dataOutAnaTrunc = dataIn*np.sqrt(2*np.pi)*sig*erf(np.sqrt((xMax**2-xx**2)/2)/sig)


# Plotting
fig, axarr = mpl.subplots(2, 1, sharex=True)
Ejemplo n.º 8
0
def openAbel_transform(image, dr=1, direction='inverse', **kwargs):
    r"""Wrapper for the openAbel implementations of Abel transforms.


    This function performs the transform on only one "right-side"
    image. ::

    .. note::  Image should be a right-side image, like this: ::

        .         +--------      +--------+
        .         |      *       | *      |
        .         |   *          |    *   |  <---------- im
        .         |  *           |     *  |
        .         +--------      o--------+
        .         |  *           |     *  |
        .         |   *          |    *   |
        .         |     *        | *      |
        .         +--------      +--------+

        In accordance with all PyAbel methods the image center ``o`` is
        defined to be mid-pixel i.e. an odd number of columns, for the
        full image.


    For the full image transform, use the :class:``abel.Transform``.

    Inverse Abel transform: ::

      iAbel = abel.Transform(image, method='openAbel').transform

    Forward Abel transform: ::

      fAbel = abel.Transform(image, direction='forward', method='openAbel').transform


    Parameters
    ----------
    image : 1D or 2D numpy array
        Right-side half-image (or quadrant). See figure below.

    dr : float
        Sampling size, used for Jacobian scaling.
        Default: `1` (appliable for pixel images).

    direction : string 'forward' or 'inverse'
        ``forward`` or ``inverse`` Abel transform.
        Default: 'inverse'.


    Returns
    -------
    aim : 1D or 2D numpy array
        forward/inverse Abel transform half-image


    """

    image = np.atleast_2d(image)  # 2D input image
    aim = np.empty_like(image)  # Abel transform array
    rows, cols = image.shape

    if direction == 'forward':
        forwardBackward = -1
    else:
        forwardBackward = 1

    if kwargs.get('method') == None:
        method = 3
    else:
        method = kwargs.get('method')

    if kwargs.get('order') == None:
        order = 2
    else:
        order = kwargs.get('order')

    try:
        abelObj = openAbel.Abel(cols,
                                forwardBackward,
                                0.,
                                dr,
                                method=method,
                                order=order)
        for ii in range(rows):
            aim[ii, :] = abelObj.execute(image[ii, :])
    except:
        raise

    if rows == 1:
        aim = aim[0]  # flatten to a vector

    return aim
Ejemplo n.º 9
0
# Parameters
nData = 40
shift = 0.
xMax = 3.5
sig = 1.
stepSize = xMax/(nData-1)

forwardBackward = -1    # Forward transform, similar definition ('1' = backward) as in FFT libraries.

# Create Abel transform object for three different methods and orders.
# Some methods ignore the order keyword argument, and for the normal user
# only method = 3 and order = 2 to order = 5 are recommended.
# Higher orders require data outside the integration domain to be stable.
# For more information see the documentation.
abelObj0 = openAbel.Abel(nData, forwardBackward, shift, stepSize, method = 2, order = 2) 
abelObj1 = openAbel.Abel(nData, forwardBackward, shift, stepSize, method = 3, order = 5)
abelObj2 = openAbel.Abel(nData, forwardBackward, shift, stepSize, method = 3, order = 11)    

# Input data
xx = np.linspace(shift*stepSize, xMax, nData)
dataIn = np.exp(-0.5*xx**2/sig**2)
xxExt = np.linspace(shift*stepSize, xMax+5*stepSize, nData+5)   # floor((order-1)/2) extra points at right end
dataInExt = np.exp(-0.5*xxExt**2/sig**2)

# Backward transform and analytical result

dataOut0 = abelObj0.execute(dataIn)
dataOut1 = abelObj1.execute(dataIn)
dataOut2 = abelObj2.execute(dataInExt, leftBoundary = 2, rightBoundary = 3)  # 2 means use even symmetry, 3 means input extra points.
dataOutAna = dataIn*np.sqrt(2*np.pi)*sig*erf(np.sqrt((xMax**2-xx**2)/2)/sig)
Ejemplo n.º 10
0
# Line styles 
linestyles = ['-', '--', '-.', ':','-', '--', '-.', ':','-', '--', '-.', ':']
lw = 2

############################################################################################################################################

# Parameters
nData = 80
xMax = 1.
shift = 0.
sig = 1./4.
stepSize = xMax/(nData-1)
forwardBackward = 2
noiseAmp = 0.01

abelObj = openAbel.Abel(nData, forwardBackward, shift, stepSize)  # Backward Abel transform where user inputs derivative


# No filtering
der = np.asarray([0.5, 0., -0.5])/stepSize
xx = np.linspace(-stepSize*(der.shape[0]-1)/2, xMax+stepSize*(der.shape[0]-1)/2, nData+(der.shape[0]-1))
dataIn = np.exp(-0.5*xx**2/sig**2)
np.random.seed(2202)
dataInWithNoise = dataIn + noiseAmp*np.random.randn(nData+(der.shape[0]-1))

# Take derivatives
dataInD = np.convolve(dataInWithNoise, der, mode = 'valid')

# Backward transform
dataOutNoFilter = abelObj.execute(dataInD)
Ejemplo n.º 11
0
def test_methodNotImplemented():
    oa.Abel(10, -1, 0., 1., method = -1)