def format_img(img, C): img_min_side = float(C.im_size) (height, width, _) = img.shape if width <= height: f = img_min_side / width new_height = int(f * height) new_width = int(img_min_side) else: f = img_min_side / height new_width = int(f * width) new_height = int(img_min_side) fx = width / float(new_width) fy = height / float(new_height) img = cv.resize(img, (new_width, new_height), interpolation=cv.INTER_CUBIC) img = img[:, :, (2, 1, 0)] img = img.astype(np.float32) img[:, :, 0] -= C.img_channel_mean[0] img[:, :, 1] -= C.img_channel_mean[1] img[:, :, 2] -= C.img_channel_mean[2] img /= C.img_scaling_factor img = np.transpose(img, (2, 0, 1)) img = np.expand_dims(img, axis=0) return img, fx, fy
import opencv as cv2 import numpy as np import time imgF = cv2.imread("/home/vishav/Documents/Project/DepthCal/Data/front.png", 0) imgR = cv2.imread("/home/vishav/Documents/Project/DepthCal/Data/rear.png", 0) imgF = cv2.resize(imgF, (480, 720)) imgR = cv2.resize(imgR, (480, 720)) imgF = imgF[300:338, 230:279] imgR = imgR[227:260, 289:327] start = time.time() dC = -50 f = 532 liF = [] for i in range(imgF.shape[0]): for j in range(imgF.shape[1]): if imgF[i][j] >= 180 and imgF[i][j] <= 255: imgF[i][j] = 255 else: imgF[i][j] = 0 liF.append(i) fy0 = min(liF) fy1 = max(liF) liR = [] for i in range(imgR.shape[0]):
def main(argv): tf_device = '/gpu:0' with tf.device(tf_device): """Build graph """ if FLAGS.color_channel == 'RGB': input_data = tf.placeholder( dtype=tf.float32, shape=[None, FLAGS.input_size, FLAGS.input_size, 3], name='input_image') else: input_data = tf.placeholder( dtype=tf.float32, shape=[None, FLAGS.input_size, FLAGS.input_size, 1], name='input_image') center_map = tf.placeholder( dtype=tf.float32, shape=[None, FLAGS.input_size, FLAGS.input_size, 1], name='center_map') model = cpm_hand_slim.CPM_Model(FLAGS.stages, FLAGS.joints + 1) model.build_model(input_data, center_map, 1) saver = tf.train.Saver() """Create session and restore weights """ sess = tf.Session() sess.run(tf.global_variables_initializer()) if FLAGS.model_path.endswith('pkl'): model.load_weights_from_file(FLAGS.model_path, sess, False) else: saver.restore(sess, FLAGS.model_path) test_center_map = cpm_utils.gaussian_img(FLAGS.input_size, FLAGS.input_size, FLAGS.input_size / 2, FLAGS.input_size / 2, FLAGS.cmap_radius) test_center_map = np.reshape(test_center_map, [1, FLAGS.input_size, FLAGS.input_size, 1]) # Check weights for variable in tf.trainable_variables(): with tf.variable_scope('', reuse=True): var = tf.get_variable(variable.name.split(':0')[0]) print(variable.name, np.mean(sess.run(var))) if not FLAGS.DEMO_TYPE.endswith(('png', 'jpg')): cam = cv2.VideoCapture(FLAGS.cam_num) # Create kalman filters if FLAGS.KALMAN_ON: kalman_filter_array = [ cv2.KalmanFilter(4, 2) for _ in range(FLAGS.joints) ] for _, joint_kalman_filter in enumerate(kalman_filter_array): joint_kalman_filter.transitionMatrix = np.array( [[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) joint_kalman_filter.measurementMatrix = np.array( [[1, 0, 0, 0], [0, 1, 0, 0]], np.float32) joint_kalman_filter.processNoiseCov = np.array( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) * FLAGS.kalman_noise else: kalman_filter_array = None with tf.device(tf_device): while True: t1 = time.time() if FLAGS.DEMO_TYPE.endswith(('png', 'jpg')): test_img = cpm_utils.read_image(FLAGS.DEMO_TYPE, [], FLAGS.input_size, 'IMAGE') else: test_img = cpm_utils.read_image([], cam, FLAGS.input_size, 'WEBCAM') test_img_resize = cv2.resize(test_img, (FLAGS.input_size, FLAGS.input_size)) print('img read time %f' % (time.time() - t1)) if FLAGS.color_channel == 'GRAY': test_img_resize = np.dot(test_img_resize[..., :3], [0.299, 0.587, 0.114]).reshape( (FLAGS.input_size, FLAGS.input_size, 1)) cv2.imshow('color', test_img.astype(np.uint8)) cv2.imshow('gray', test_img_resize.astype(np.uint8)) cv2.waitKey(1) test_img_input = test_img_resize / 256.0 - 0.5 test_img_input = np.expand_dims(test_img_input, axis=0) if FLAGS.DEMO_TYPE.endswith(('png', 'jpg')): # Inference t1 = time.time() predict_heatmap, stage_heatmap_np = sess.run( [ model.current_heatmap, model.stage_heatmap, ], feed_dict={ 'input_image:0': test_img_input, 'center_map:0': test_center_map }) # Show visualized image demo_img = visualize_result(test_img, FLAGS, stage_heatmap_np, kalman_filter_array) cv2.imshow('demo_img', demo_img.astype(np.uint8)) if cv2.waitKey(0) == ord('q'): break print('fps: %.2f' % (1 / (time.time() - t1))) elif FLAGS.DEMO_TYPE == 'MULTI': # Inference t1 = time.time() predict_heatmap, stage_heatmap_np = sess.run( [ model.current_heatmap, model.stage_heatmap, ], feed_dict={ 'input_image:0': test_img_input, 'center_map:0': test_center_map }) # Show visualized image demo_img = visualize_result(test_img, FLAGS, stage_heatmap_np, kalman_filter_array) cv2.imshow('demo_img', demo_img.astype(np.uint8)) if cv2.waitKey(1) == ord('q'): break print('fps: %.2f' % (1 / (time.time() - t1))) elif FLAGS.DEMO_TYPE == 'SINGLE': # Inference t1 = time.time() stage_heatmap_np = sess.run( [model.stage_heatmap[5]], feed_dict={ 'input_image:0': test_img_input, 'center_map:0': test_center_map }) # Show visualized image demo_img = visualize_result(test_img, FLAGS, stage_heatmap_np, kalman_filter_array) cv2.imshow('current heatmap', (demo_img).astype(np.uint8)) if cv2.waitKey(1) == ord('q'): break print('fps: %.2f' % (1 / (time.time() - t1))) elif FLAGS.DEMO_TYPE == 'HM': # Inference t1 = time.time() stage_heatmap_np = sess.run( [model.stage_heatmap[FLAGS.stages - 1]], feed_dict={ 'input_image:0': test_img_input, 'center_map:0': test_center_map }) print('fps: %.2f' % (1 / (time.time() - t1))) demo_stage_heatmap = stage_heatmap_np[ len(stage_heatmap_np) - 1][0, :, :, 0:FLAGS.joints].reshape( (FLAGS.hmap_size, FLAGS.hmap_size, FLAGS.joints)) demo_stage_heatmap = cv2.resize( demo_stage_heatmap, (FLAGS.input_size, FLAGS.input_size)) vertical_imgs = [] tmp_img = None joint_coord_set = np.zeros((FLAGS.joints, 2)) for joint_num in range(FLAGS.joints): # Concat until 4 img if (joint_num % 4) == 0 and joint_num != 0: vertical_imgs.append(tmp_img) tmp_img = None demo_stage_heatmap[:, :, joint_num] *= ( 255 / np.max(demo_stage_heatmap[:, :, joint_num])) # Plot color joints if np.min(demo_stage_heatmap[:, :, joint_num]) > -50: joint_coord = np.unravel_index( np.argmax(demo_stage_heatmap[:, :, joint_num]), (FLAGS.input_size, FLAGS.input_size)) joint_coord_set[joint_num, :] = joint_coord color_code_num = (joint_num // 4) if joint_num in [0, 4, 8, 12, 16]: if PYTHON_VERSION == 3: joint_color = list( map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])) else: joint_color = map( lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]) cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color, thickness=-1) else: if PYTHON_VERSION == 3: joint_color = list( map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])) else: joint_color = map( lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]) cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color, thickness=-1) # Put text tmp = demo_stage_heatmap[:, :, joint_num].astype(np.uint8) tmp = cv2.putText( tmp, 'Min:' + str(np.min(demo_stage_heatmap[:, :, joint_num])), org=(5, 20), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.3, color=150) tmp = cv2.putText( tmp, 'Mean:' + str(np.mean(demo_stage_heatmap[:, :, joint_num])), org=(5, 30), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.3, color=150) tmp_img = np.concatenate((tmp_img, tmp), axis=0) \ if tmp_img is not None else tmp # Plot limbs for limb_num in range(len(limbs)): if np.min( demo_stage_heatmap[:, :, limbs[limb_num][0]] ) > -2000 and np.min( demo_stage_heatmap[:, :, limbs[limb_num][1]]) > -2000: x1 = joint_coord_set[limbs[limb_num][0], 0] y1 = joint_coord_set[limbs[limb_num][0], 1] x2 = joint_coord_set[limbs[limb_num][1], 0] y2 = joint_coord_set[limbs[limb_num][1], 1] length = ((x1 - x2)**2 + (y1 - y2)**2)**0.5 if length < 10000 and length > 5: deg = math.degrees(math.atan2(x1 - x2, y1 - y2)) polygon = cv2.ellipse2Poly((int( (y1 + y2) / 2), int((x1 + x2) / 2)), (int(length / 2), 3), int(deg), 0, 360, 1) color_code_num = limb_num // 4 if PYTHON_VERSION == 3: limb_color = list( map(lambda x: x + 35 * (limb_num % 4), joint_color_code[color_code_num])) else: limb_color = map( lambda x: x + 35 * (limb_num % 4), joint_color_code[color_code_num]) cv2.fillConvexPoly(test_img, polygon, color=limb_color) if tmp_img is not None: tmp_img = np.lib.pad( tmp_img, ((0, vertical_imgs[0].shape[0] - tmp_img.shape[0]), (0, 0)), 'constant', constant_values=(0, 0)) vertical_imgs.append(tmp_img) # Concat horizontally output_img = None for col in range(len(vertical_imgs)): output_img = np.concatenate((output_img, vertical_imgs[col]), axis=1) if output_img is not None else \ vertical_imgs[col] output_img = output_img.astype(np.uint8) output_img = cv2.applyColorMap(output_img, cv2.COLORMAP_JET) test_img = cv2.resize(test_img, (300, 300), cv2.INTER_LANCZOS4) cv2.imshow('hm', output_img) cv2.moveWindow('hm', 2000, 200) cv2.imshow('rgb', test_img) cv2.moveWindow('rgb', 2000, 750) if cv2.waitKey(1) == ord('q'): break
def processImage(screen): screen = cv2.cvtColor(screen, cv2.COLOR_BGR2RGB) gray = cv2.resize(screen, (80, 60)) return gray
def visualize_result(test_img, FLAGS, stage_heatmap_np, kalman_filter_array): t1 = time.time() demo_stage_heatmaps = [] if FLAGS.DEMO_TYPE == 'MULTI': for stage in range(len(stage_heatmap_np)): demo_stage_heatmap = stage_heatmap_np[stage][ 0, :, :, 0:FLAGS.joints].reshape( (FLAGS.hmap_size, FLAGS.hmap_size, FLAGS.joints)) demo_stage_heatmap = cv2.resize( demo_stage_heatmap, (test_img.shape[1], test_img.shape[0])) demo_stage_heatmap = np.amax(demo_stage_heatmap, axis=2) demo_stage_heatmap = np.reshape( demo_stage_heatmap, (test_img.shape[1], test_img.shape[0], 1)) demo_stage_heatmap = np.repeat(demo_stage_heatmap, 3, axis=2) demo_stage_heatmap *= 255 demo_stage_heatmaps.append(demo_stage_heatmap) last_heatmap = stage_heatmap_np[len(stage_heatmap_np) - 1][0, :, :, 0:FLAGS.joints].reshape( (FLAGS.hmap_size, FLAGS.hmap_size, FLAGS.joints)) last_heatmap = cv2.resize(last_heatmap, (test_img.shape[1], test_img.shape[0])) else: last_heatmap = stage_heatmap_np[len(stage_heatmap_np) - 1][0, :, :, 0:FLAGS.joints].reshape( (FLAGS.hmap_size, FLAGS.hmap_size, FLAGS.joints)) last_heatmap = cv2.resize(last_heatmap, (test_img.shape[1], test_img.shape[0])) print('hm resize time %f' % (time.time() - t1)) t1 = time.time() joint_coord_set = np.zeros((FLAGS.joints, 2)) # Plot joint colors if kalman_filter_array is not None: for joint_num in range(FLAGS.joints): joint_coord = np.unravel_index( np.argmax(last_heatmap[:, :, joint_num]), (test_img.shape[0], test_img.shape[1])) joint_coord = np.array(joint_coord).reshape( (2, 1)).astype(np.float32) kalman_filter_array[joint_num].correct(joint_coord) kalman_pred = kalman_filter_array[joint_num].predict() joint_coord_set[joint_num, :] = np.array( [kalman_pred[0], kalman_pred[1]]).reshape((2)) color_code_num = (joint_num // 4) if joint_num in [0, 4, 8, 12, 16]: if PYTHON_VERSION == 3: joint_color = list( map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])) else: joint_color = map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]) cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color, thickness=-1) else: if PYTHON_VERSION == 3: joint_color = list( map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])) else: joint_color = map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]) cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color, thickness=-1) else: for joint_num in range(FLAGS.joints): joint_coord = np.unravel_index( np.argmax(last_heatmap[:, :, joint_num]), (test_img.shape[0], test_img.shape[1])) joint_coord_set[joint_num, :] = [joint_coord[0], joint_coord[1]] color_code_num = (joint_num // 4) if joint_num in [0, 4, 8, 12, 16]: if PYTHON_VERSION == 3: joint_color = list( map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])) else: joint_color = map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]) cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color, thickness=-1) else: if PYTHON_VERSION == 3: joint_color = list( map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num])) else: joint_color = map(lambda x: x + 35 * (joint_num % 4), joint_color_code[color_code_num]) cv2.circle(test_img, center=(joint_coord[1], joint_coord[0]), radius=3, color=joint_color, thickness=-1) print('plot joint time %f' % (time.time() - t1)) t1 = time.time() # Plot limb colors for limb_num in range(len(limbs)): x1 = joint_coord_set[limbs[limb_num][0], 0] y1 = joint_coord_set[limbs[limb_num][0], 1] x2 = joint_coord_set[limbs[limb_num][1], 0] y2 = joint_coord_set[limbs[limb_num][1], 1] length = ((x1 - x2)**2 + (y1 - y2)**2)**0.5 if length < 150 and length > 5: deg = math.degrees(math.atan2(x1 - x2, y1 - y2)) polygon = cv2.ellipse2Poly((int((y1 + y2) / 2), int( (x1 + x2) / 2)), (int(length / 2), 3), int(deg), 0, 360, 1) color_code_num = limb_num // 4 if PYTHON_VERSION == 3: limb_color = list( map(lambda x: x + 35 * (limb_num % 4), joint_color_code[color_code_num])) else: limb_color = map(lambda x: x + 35 * (limb_num % 4), joint_color_code[color_code_num]) cv2.fillConvexPoly(test_img, polygon, color=limb_color) print('plot limb time %f' % (time.time() - t1)) if FLAGS.DEMO_TYPE == 'MULTI': upper_img = np.concatenate( (demo_stage_heatmaps[0], demo_stage_heatmaps[1], demo_stage_heatmaps[2]), axis=1) lower_img = np.concatenate( (demo_stage_heatmaps[3], demo_stage_heatmaps[len(stage_heatmap_np) - 1], test_img), axis=1) demo_img = np.concatenate((upper_img, lower_img), axis=0) return demo_img else: return test_img