Ejemplo n.º 1
0
    def test_square(self):
        m, n = (3, 3)

        # Obtain a random matrix of orthonormal rows
        Q = random_unitary_matrix(n)
        Q = Q[:m, :]
        Q = Q[:m, :]

        # Get Givens decomposition of Q
        givens_rotations, V, diagonal = givens_decomposition(Q)

        # There should be no Givens rotations
        self.assertEqual(givens_rotations, list())

        # Compute V * Q * U^\dagger
        W = V.dot(Q)

        # Construct the diagonal matrix
        D = numpy.zeros((m, n), dtype=complex)
        D[numpy.diag_indices(m)] = diagonal

        # Assert that W and D are the same
        for i in range(m):
            for j in range(n):
                self.assertAlmostEqual(D[i, j], W[i, j])
Ejemplo n.º 2
0
    def test_real_numbers(self):
        for m, n in self.test_dimensions:
            # Obtain a random real matrix of orthonormal rows
            Q = random_unitary_matrix(n, real=True)
            Q = Q[:m, :]

            # Get Givens decomposition of Q
            givens_rotations, V, diagonal = givens_decomposition(Q)

            # Compute U
            U = numpy.eye(n, dtype=complex)
            for parallel_set in givens_rotations:
                combined_givens = numpy.eye(n, dtype=complex)
                for i, j, theta, phi in reversed(parallel_set):
                    c = numpy.cos(theta)
                    s = numpy.sin(theta)
                    phase = numpy.exp(1.j * phi)
                    G = numpy.array([[c, -phase * s], [s, phase * c]],
                                    dtype=complex)
                    givens_rotate(combined_givens, G, i, j)
                U = combined_givens.dot(U)

            # Compute V * Q * U^\dagger
            W = V.dot(Q.dot(U.T.conj()))

            # Construct the diagonal matrix
            D = numpy.zeros((m, n), dtype=complex)
            D[numpy.diag_indices(m)] = diagonal

            # Assert that W and D are the same
            for i in range(m):
                for j in range(n):
                    self.assertAlmostEqual(D[i, j], W[i, j])
Ejemplo n.º 3
0
    def test_bad_dimensions(self):
        m, n = (3, 2)

        # Obtain a random matrix of orthonormal rows
        Q = random_unitary_matrix(m)
        Q = Q[:m, :]
        Q = Q[:m, :n]

        with self.assertRaises(ValueError):
            _ = givens_decomposition(Q)
Ejemplo n.º 4
0
    def test_identity(self):
        n = 3
        Q = numpy.eye(n, dtype=complex)
        givens_rotations, V, diagonal = givens_decomposition(Q)

        # V should be the identity
        identity = numpy.eye(n, dtype=complex)
        for i in range(n):
            for j in range(n):
                self.assertAlmostEqual(V[i, j], identity[i, j])

        # There should be no Givens rotations
        self.assertEqual(givens_rotations, list())

        # The diagonal should be ones
        for d in diagonal:
            self.assertAlmostEqual(d, 1.)
Ejemplo n.º 5
0
    def test_antidiagonal(self):
        m, n = (3, 3)
        Q = numpy.zeros((m, n), dtype=complex)
        Q[0, 2] = 1.
        Q[1, 1] = 1.
        Q[2, 0] = 1.
        givens_rotations, V, diagonal = givens_decomposition(Q)

        # There should be no Givens rotations
        self.assertEqual(givens_rotations, list())

        # VQ should equal the diagonal
        VQ = V.dot(Q)
        D = numpy.zeros((m, n), dtype=complex)
        D[numpy.diag_indices(m)] = diagonal
        for i in range(n):
            for j in range(n):
                self.assertAlmostEqual(VQ[i, j], D[i, j])
Ejemplo n.º 6
0
def slater_determinant_preparation_circuit(slater_determinant_matrix):
    r"""Obtain the description of a circuit which prepares a Slater determinant.

    The input is an :math:`N_f \times N` matrix :math:`Q` with orthonormal
    rows. Such a matrix describes the Slater determinant

    .. math::

        b^\dagger_1 \cdots b^\dagger_{N_f} \lvert \text{vac} \rangle,

    where

    .. math::

        b^\dagger_j = \sum_{k = 1}^N Q_{jk} a^\dagger_k.

    The output is the description of a circuit which prepares this
    Slater determinant, up to a global phase.
    The starting state which the circuit should be applied to
    is a Slater determinant (in the computational basis) with
    the first :math:`N_f` orbitals filled.

    Args:
        slater_determinant_matrix: The matrix :math:`Q` which describes the
            Slater determinant to be prepared.
    Returns:
        circuit_description:
            A list of operations describing the circuit. Each operation
            is a tuple of elementary operations that can be performed in
            parallel. Each elementary operation is a tuple of the form
            :math:`(i, j, \theta, \varphi)`, indicating a Givens rotation
            of modes :math:`i` and :math:`j` by angles :math:`\theta`
            and :math:`\varphi`.
    """
    decomposition, _, _ = givens_decomposition(slater_determinant_matrix)
    circuit_description = list(reversed(decomposition))
    return circuit_description
Ejemplo n.º 7
0
 def test_forced_insertion(self):
     Q = numpy.zeros([2, 4])
     Q[0, 0] = Q[1, 1] = 1
     givens_rotations, _, _ = givens_decomposition(Q, always_insert=True)
     assert len(givens_rotations) == 3