Ejemplo n.º 1
0
 def test_bad_dimensions(self):
     n, p = (3, 7)
     rand_mat = numpy.random.randn(n, p)
     with self.assertRaises(ValueError):
         decomposition, left_unitary, antidiagonal = (
             fermionic_gaussian_decomposition(rand_mat))
Ejemplo n.º 2
0
 def test_bad_constraints(self):
     n = 3
     ones_mat = numpy.ones((n, 2 * n))
     with self.assertRaises(ValueError):
         decomposition, left_unitary, antidiagonal = (
             fermionic_gaussian_decomposition(ones_mat))
Ejemplo n.º 3
0
    def test_main_procedure(self):
        for n in self.test_dimensions:
            # Obtain a random quadratic Hamiltonian
            quadratic_hamiltonian = random_quadratic_hamiltonian(n)

            # Get the diagonalizing fermionic unitary
            ferm_unitary = (
                quadratic_hamiltonian.diagonalizing_bogoliubov_transform())
            lower_unitary = ferm_unitary[n:]

            # Get fermionic Gaussian decomposition of lower_unitary
            decomposition, left_decomposition, diagonal, left_diagonal = (
                fermionic_gaussian_decomposition(lower_unitary))

            # Compute left_unitary
            left_unitary = numpy.eye(n, dtype=complex)
            for parallel_set in left_decomposition:
                combined_op = numpy.eye(n, dtype=complex)
                for op in reversed(parallel_set):
                    i, j, theta, phi = op
                    c = numpy.cos(theta)
                    s = numpy.sin(theta)
                    phase = numpy.exp(1.j * phi)
                    givens_rotation = numpy.array(
                        [[c, -phase * s], [s, phase * c]], dtype=complex)
                    givens_rotate(combined_op, givens_rotation, i, j)
                left_unitary = combined_op.dot(left_unitary)
            for i in range(n):
                left_unitary[i] *= left_diagonal[i]
            left_unitary = left_unitary.T
            for i in range(n):
                left_unitary[i] *= diagonal[i]

            # Check that left_unitary zeroes out the correct entries of
            # lower_unitary
            product = left_unitary.dot(lower_unitary)
            for i in range(n - 1):
                for j in range(n - 1 - i):
                    self.assertAlmostEqual(product[i, j], 0.)

            # Compute right_unitary
            right_unitary = numpy.eye(2 * n, dtype=complex)
            for parallel_set in decomposition:
                combined_op = numpy.eye(2 * n, dtype=complex)
                for op in reversed(parallel_set):
                    if op == 'pht':
                        swap_rows(combined_op, n - 1, 2 * n - 1)
                    else:
                        i, j, theta, phi = op
                        c = numpy.cos(theta)
                        s = numpy.sin(theta)
                        phase = numpy.exp(1.j * phi)
                        givens_rotation = numpy.array(
                            [[c, -phase * s], [s, phase * c]], dtype=complex)
                        double_givens_rotate(combined_op, givens_rotation, i,
                                             j)
                right_unitary = combined_op.dot(right_unitary)

            # Compute left_unitary * lower_unitary * right_unitary^\dagger
            product = left_unitary.dot(
                lower_unitary.dot(right_unitary.T.conj()))

            # Construct the diagonal matrix
            diag = numpy.zeros((n, 2 * n), dtype=complex)
            diag[range(n), range(n, 2 * n)] = diagonal

            # Assert that W and D are the same
            for i in numpy.ndindex((n, 2 * n)):
                self.assertAlmostEqual(diag[i], product[i])