Ejemplo n.º 1
0
def main():

    setup_timestamp_logging()

    # Load in the force field
    force_field_path = "smirnoff99Frosst-1.1.0.offxml"
    force_field_source = SmirnoffForceFieldSource.from_path(force_field_path)

    # Create a data set containing three solvation free energies.
    data_set = PhysicalPropertyDataSet.from_json("hydration_data_set.json")
    data_set.json("hydration_data_set.json", format=True)

    # Set up a server object to run the calculations using.
    server = setup_server(backend_type=BackendType.LocalGPU,
                          max_number_of_workers=1,
                          port=8002)

    with server:

        # Request the estimates.
        property_estimator = EvaluatorClient(
            ConnectionOptions(server_port=8002))

        options = RequestOptions()
        options.calculation_layers = ["SimulationLayer"]
        options.add_schema("SimulationLayer", "SolvationFreeEnergy",
                           _get_fixed_lambda_schema())

        request, _ = property_estimator.request_estimate(
            property_set=data_set,
            force_field_source=force_field_source,
            options=options,
        )

        # Wait for the results.
        results, _ = request.results(True, 60)

        # Save the result to file.
        results.json("results.json", True)
def test_workflow_layer():
    """Test the `WorkflowLayer` calculation layer. As the `SimulationLayer`
    is the simplest implementation of the abstract layer, we settle for
    testing this."""

    properties_to_estimate = [
        create_dummy_property(Density),
        create_dummy_property(Density),
    ]

    # Create a very simple workflow which just returns some placeholder
    # value.
    estimated_value = Observable(
        (1 * unit.kelvin).plus_minus(0.1 * unit.kelvin))
    protocol_a = DummyProtocol("protocol_a")
    protocol_a.input_value = estimated_value

    schema = WorkflowSchema()
    schema.protocol_schemas = [protocol_a.schema]
    schema.final_value_source = ProtocolPath("output_value", protocol_a.id)

    layer_schema = SimulationSchema()
    layer_schema.workflow_schema = schema

    options = RequestOptions()
    options.add_schema("SimulationLayer", "Density", layer_schema)

    batch = server.Batch()
    batch.queued_properties = properties_to_estimate
    batch.options = options

    with tempfile.TemporaryDirectory() as directory:

        with temporarily_change_directory(directory):

            # Create a directory for the layer.
            layer_directory = "simulation_layer"
            os.makedirs(layer_directory)

            # Set-up a simple storage backend and add a force field to it.
            force_field = SmirnoffForceFieldSource.from_path(
                "smirnoff99Frosst-1.1.0.offxml")

            storage_backend = LocalFileStorage()
            batch.force_field_id = storage_backend.store_force_field(
                force_field)

            # Create a simple calculation backend to test with.
            with DaskLocalCluster() as calculation_backend:

                def dummy_callback(returned_request):

                    assert len(returned_request.estimated_properties) == 2
                    assert len(returned_request.exceptions) == 0

                simulation_layer = SimulationLayer()

                simulation_layer.schedule_calculation(
                    calculation_backend,
                    storage_backend,
                    layer_directory,
                    batch,
                    dummy_callback,
                    True,
                )
Ejemplo n.º 3
0
def main():

    setup_timestamp_logging()

    # Retrieve the current version.
    version = evaluator.__version__.replace(".", "-").replace("v", "")

    if "+" in version:
        version = "latest"

    # Create a new directory to run the current versions results in.
    os.makedirs(os.path.join(version, "results"))

    with temporarily_change_directory(version):

        with DaskLSFBackend(
                minimum_number_of_workers=1,
                maximum_number_of_workers=12,
                resources_per_worker=QueueWorkerResources(
                    number_of_gpus=1,
                    preferred_gpu_toolkit=QueueWorkerResources.GPUToolkit.CUDA,
                    per_thread_memory_limit=5 * unit.gigabyte,
                    wallclock_time_limit="05:59",
                ),
                setup_script_commands=[
                    f"conda activate openff-evaluator-{version}",
                    "module load cuda/10.0",
                ],
                queue_name="gpuqueue",
        ) as calculation_backend:

            with EvaluatorServer(
                    calculation_backend,
                    working_directory="outputs",
                    storage_backend=LocalFileStorage("cached-data"),
            ):

                client = EvaluatorClient()

                for allowed_layer in ["SimulationLayer", "ReweightingLayer"]:

                    data_set = define_data_set(
                        allowed_layer == "ReweightingLayer")

                    options = RequestOptions()
                    options.calculation_layers = [allowed_layer]
                    options.calculation_schemas = {
                        property_type: {}
                        for property_type in data_set.property_types
                    }

                    if allowed_layer == "SimulationLayer":

                        options.add_schema(
                            "SimulationLayer",
                            "SolvationFreeEnergy",
                            solvation_free_energy_schema(),
                        )

                    request, _ = client.request_estimate(
                        data_set,
                        ForceField("openff-1.2.0.offxml"),
                        options,
                        parameter_gradient_keys=[
                            ParameterGradientKey("vdW", smirks, attribute)
                            for smirks in [
                                "[#1:1]-[#6X4]",
                                "[#1:1]-[#6X4]-[#7,#8,#9,#16,#17,#35]",
                                "[#1:1]-[#8]",
                                "[#6X4:1]",
                                "[#8X2H1+0:1]",
                                "[#1]-[#8X2H2+0:1]-[#1]",
                            ] for attribute in ["epsilon", "rmin_half"]
                        ],
                    )

                    results, _ = request.results(synchronous=True,
                                                 polling_interval=60)
                    results.json(
                        os.path.join("results", f"{allowed_layer}.json"))