Ejemplo n.º 1
0
class ConcatenateTrajectories(Protocol):
    """A protocol which concatenates multiple trajectories into
    a single one.
    """

    input_coordinate_paths = InputAttribute(
        docstring=
        "A list of paths to the starting PDB coordinates for each of the "
        "trajectories.",
        type_hint=list,
        default_value=UNDEFINED,
    )
    input_trajectory_paths = InputAttribute(
        docstring="A list of paths to the trajectories to concatenate.",
        type_hint=list,
        default_value=UNDEFINED,
    )

    output_coordinate_path = OutputAttribute(
        docstring="The path the PDB coordinate file which contains the topology "
        "of the concatenated trajectory.",
        type_hint=str,
    )

    output_trajectory_path = OutputAttribute(
        docstring="The path to the concatenated trajectory.", type_hint=str)

    def _execute(self, directory, available_resources):

        import mdtraj

        if len(self.input_coordinate_paths) != len(
                self.input_trajectory_paths):

            raise ValueError(
                "There should be the same number of coordinate and trajectory paths."
            )

        if len(self.input_trajectory_paths) == 0:
            raise ValueError("No trajectories were given to concatenate.")

        trajectories = []

        output_coordinate_path = None

        for coordinate_path, trajectory_path in zip(
                self.input_coordinate_paths, self.input_trajectory_paths):

            output_coordinate_path = output_coordinate_path or coordinate_path
            trajectories.append(
                mdtraj.load_dcd(trajectory_path, coordinate_path))

        self.output_coordinate_path = output_coordinate_path
        output_trajectory = (trajectories[0] if len(trajectories) == 1 else
                             mdtraj.join(trajectories, False, False))

        self.output_trajectory_path = path.join(directory,
                                                "output_trajectory.dcd")
        output_trajectory.save_dcd(self.output_trajectory_path)
Ejemplo n.º 2
0
class AveragePropertyProtocol(Protocol, abc.ABC):
    """An abstract base class for protocols which will calculate the
    average of a property and its uncertainty via bootstrapping.
    """

    bootstrap_iterations = InputAttribute(
        docstring="The number of bootstrap iterations to perform.",
        type_hint=int,
        default_value=250,
        merge_behavior=InequalityMergeBehaviour.LargestValue,
    )
    bootstrap_sample_size = InputAttribute(
        docstring="The relative sample size to use for bootstrapping.",
        type_hint=float,
        default_value=1.0,
        merge_behavior=InequalityMergeBehaviour.LargestValue,
    )

    equilibration_index = OutputAttribute(
        docstring=
        "The index in the data set after which the data is stationary.",
        type_hint=int,
    )
    statistical_inefficiency = OutputAttribute(
        docstring="The statistical inefficiency in the data set.",
        type_hint=float)

    value = OutputAttribute(docstring="The average value and its uncertainty.",
                            type_hint=pint.Measurement)
    uncorrelated_values = OutputAttribute(
        docstring=
        "The uncorrelated values which the average was calculated from.",
        type_hint=pint.Quantity,
    )

    def _bootstrap_function(self, **sample_kwargs):
        """The function to perform on the data set being sampled by
        bootstrapping.

        Parameters
        ----------
        sample_kwargs: dict of str and np.ndarray
            A key words dictionary of the bootstrap sample data, where the
            sample data is a numpy array of shape=(num_frames, num_dimensions)
            with dtype=float.

        Returns
        -------
        float
            The result of evaluating the data.
        """

        assert len(sample_kwargs) == 1
        sample_data = next(iter(sample_kwargs.values()))

        return sample_data.mean()
Ejemplo n.º 3
0
class ExtractUncorrelatedStatisticsData(ExtractUncorrelatedData):
    """A protocol which will subsample entries from a statistics array, yielding only uncorrelated
    entries as determined from a provided statistical inefficiency and equilibration time.
    """

    input_statistics_path = InputAttribute(
        docstring="The file path to the statistics to subsample.",
        type_hint=str,
        default_value=UNDEFINED,
    )

    output_statistics_path = OutputAttribute(
        docstring="The file path to the subsampled statistics.", type_hint=str)

    def _execute(self, directory, available_resources):

        statistics_array = StatisticsArray.from_pandas_csv(
            self.input_statistics_path)

        uncorrelated_indices = timeseries.get_uncorrelated_indices(
            len(statistics_array) - self.equilibration_index,
            self.statistical_inefficiency,
        )

        uncorrelated_indices = [
            index + self.equilibration_index for index in uncorrelated_indices
        ]
        uncorrelated_statistics = StatisticsArray.from_existing(
            statistics_array, uncorrelated_indices)

        self.output_statistics_path = path.join(directory,
                                                "uncorrelated_statistics.csv")
        uncorrelated_statistics.to_pandas_csv(self.output_statistics_path)

        self.number_of_uncorrelated_samples = len(uncorrelated_statistics)
Ejemplo n.º 4
0
class ComputeSymmetryCorrection(Protocol):
    """Computes the symmetry correction for an APR calculation which involves
    a guest with symmetry.
    """

    n_microstates = InputAttribute(
        docstring="The number of symmetry microstates of the guest molecule.",
        type_hint=int,
        default_value=UNDEFINED,
    )
    thermodynamic_state = InputAttribute(
        docstring=
        "The thermodynamic state that the calculation was performed at.",
        type_hint=ThermodynamicState,
        default_value=UNDEFINED,
    )

    result = OutputAttribute(docstring="The symmetry correction.",
                             type_hint=Observable)

    def _execute(self, directory, available_resources):

        from paprika.evaluator import Analyze

        self.result = Observable(
            unit.Measurement(
                Analyze.symmetry_correction(
                    self.n_microstates,
                    self.thermodynamic_state.temperature.to(
                        unit.kelvin).magnitude,
                ) * unit.kilocalorie / unit.mole,
                0 * unit.kilocalorie / unit.mole,
            ))
Ejemplo n.º 5
0
class MultiplyValue(Protocol):
    """A protocol which multiplies a value by a specified scalar"""

    value = InputAttribute(
        docstring="The value to multiply.",
        type_hint=typing.Union[
            int, float, pint.Quantity, pint.Measurement, ParameterGradient
        ],
        default_value=UNDEFINED,
    )
    multiplier = InputAttribute(
        docstring="The scalar to multiply by.",
        type_hint=typing.Union[int, float, pint.Quantity],
        default_value=UNDEFINED,
    )

    result = OutputAttribute(
        docstring="The result of the multiplication.",
        type_hint=typing.Union[
            int, float, pint.Measurement, pint.Quantity, ParameterGradient
        ],
    )

    def _execute(self, directory, available_resources):
        self.result = self.value * self.multiplier
Ejemplo n.º 6
0
class ConcatenateStatistics(Protocol):
    """A protocol which concatenates multiple trajectories into
    a single one.
    """

    input_statistics_paths = InputAttribute(
        docstring="A list of paths to statistics arrays to concatenate.",
        type_hint=list,
        default_value=UNDEFINED,
    )
    output_statistics_path = OutputAttribute(
        docstring="The path the csv file which contains the concatenated statistics.",
        type_hint=str,
    )

    def _execute(self, directory, available_resources):

        if len(self.input_statistics_paths) == 0:
            raise ValueError("No statistics arrays were given to concatenate.")

        arrays = [
            StatisticsArray.from_pandas_csv(file_path)
            for file_path in self.input_statistics_paths
        ]

        if len(arrays) > 1:
            output_array = StatisticsArray.join(*arrays)
        else:
            output_array = arrays[0]

        self.output_statistics_path = path.join(directory, "output_statistics.csv")
        output_array.to_pandas_csv(self.output_statistics_path)
Ejemplo n.º 7
0
class ConcatenateObservables(Protocol):
    """A protocol which concatenates multiple ``ObservableFrame`` objects into
    a single ``ObservableFrame`` object.
    """

    input_observables = InputAttribute(
        docstring="A list of observable arrays to concatenate.",
        type_hint=list,
        default_value=UNDEFINED,
    )
    output_observables = OutputAttribute(
        docstring="The concatenated observable array.",
        type_hint=typing.Union[ObservableArray, ObservableFrame],
    )

    def _execute(self, directory, available_resources):

        if len(self.input_observables) == 0:
            raise ValueError("No arrays were given to concatenate.")

        if not all(
                isinstance(observables, type(self.input_observables[0]))
                for observables in self.input_observables):
            raise ValueError(
                "The observables to concatenate must be the same type.")

        object_type = type(self.input_observables[0])

        if len(self.input_observables) > 1:
            self.output_observables = object_type.join(*self.input_observables)
        else:
            self.output_observables = copy.deepcopy(self.input_observables[0])
Ejemplo n.º 8
0
class SubtractValues(Protocol):
    """A protocol to subtract one value from another such that:

    `result = value_b - value_a`
    """

    value_a = InputAttribute(
        docstring="`value_a` in the formula `result` = `value_b` - `value_a`.",
        type_hint=typing.Union[
            int, float, pint.Quantity, pint.Measurement, ParameterGradient
        ],
        default_value=UNDEFINED,
    )
    value_b = InputAttribute(
        docstring="`value_b` in the formula `result` = `value_b` - `value_a`.",
        type_hint=typing.Union[
            int, float, pint.Quantity, pint.Measurement, ParameterGradient
        ],
        default_value=UNDEFINED,
    )

    result = OutputAttribute(
        docstring="The results of `value_b` - `value_a`.",
        type_hint=typing.Union[
            int, float, pint.Measurement, pint.Quantity, ParameterGradient
        ],
    )

    def _execute(self, directory, available_resources):
        self.result = self.value_b - self.value_a
Ejemplo n.º 9
0
class AddValues(Protocol):
    """A protocol to add together a list of values.

    Notes
    -----
    The `values` input must either be a list of pint.Quantity, a ProtocolPath to a list
    of pint.Quantity, or a list of ProtocolPath which each point to a pint.Quantity.
    """

    values = InputAttribute(
        docstring="The values to add together.", type_hint=list, default_value=UNDEFINED
    )

    result = OutputAttribute(
        docstring="The sum of the values.",
        type_hint=typing.Union[
            int, float, pint.Measurement, pint.Quantity, ParameterGradient
        ],
    )

    def _execute(self, directory, available_resources):

        if len(self.values) < 1:
            raise ValueError("There were no values to add together")

        self.result = self.values[0]

        for value in self.values[1:]:
            self.result += value
Ejemplo n.º 10
0
class DivideValue(Protocol):
    """A protocol which divides a value by a specified scalar"""

    value = InputAttribute(
        docstring="The value to divide.",
        type_hint=typing.Union[
            int, float, pint.Quantity, pint.Measurement, ParameterGradient
        ],
        default_value=UNDEFINED,
    )
    divisor = InputAttribute(
        docstring="The scalar to divide by.",
        type_hint=typing.Union[int, float, pint.Quantity],
        default_value=UNDEFINED,
    )

    result = OutputAttribute(
        docstring="The result of the division.",
        type_hint=typing.Union[
            int, float, pint.Measurement, pint.Quantity, ParameterGradient
        ],
    )

    def _execute(self, directory, available_resources):
        self.result = self.value / self.divisor
Ejemplo n.º 11
0
class DecorrelateObservables(BaseDecorrelateProtocol):
    """A protocol which will subsample a trajectory of observables, yielding only
    uncorrelated entries as determined from a provided statistical inefficiency and
    equilibration time.
    """

    input_observables = InputAttribute(
        docstring="The observables to decorrelate.",
        type_hint=typing.Union[ObservableArray, ObservableFrame],
        default_value=UNDEFINED,
    )

    output_observables = OutputAttribute(
        docstring="The decorrelated observables.",
        type_hint=typing.Union[ObservableArray, ObservableFrame],
    )

    def _execute(self, directory, available_resources):

        assert len(self.input_observables) == self._n_expected()

        uncorrelated_indices = self._uncorrelated_indices()
        uncorrelated_observable = self.input_observables.subset(uncorrelated_indices)

        self.output_observables = uncorrelated_observable
Ejemplo n.º 12
0
class AttributeObject(AttributeClass):

    required_input = InputAttribute("", str, UNDEFINED, optional=False)
    optional_input = InputAttribute("", int, UNDEFINED, optional=True)

    some_output = OutputAttribute("", int)

    def __init__(self):
        self.some_output = 5
Ejemplo n.º 13
0
class _GenerateRestraints(Protocol, abc.ABC):
    """The base class which will generate a set of restraint values from their
    respective schemas and for a specific APR phase.
    """

    restraint_schemas = InputAttribute(
        docstring="The full set of restraint schemas.",
        type_hint=dict,
        default_value=UNDEFINED,
    )

    restraints_path = OutputAttribute(
        docstring="The file path to the `paprika` generated restraints JSON file.",
        type_hint=str,
    )

    @classmethod
    def _restraints_to_dict(cls, restraints):
        """Converts a list of ``paprika`` restraint objects to
        a list of JSON compatible dictionary representations
        """
        from paprika.io import NumpyEncoder

        return [
            json.loads(json.dumps(restraint.__dict__, cls=NumpyEncoder))
            for restraint in restraints
        ]

    def _save_restraints(
        self,
        directory: str,
        static_restraints,
        conformational_restraints,
        symmetry_restraints=None,
        wall_restraints=None,
        guest_restraints=None,
    ):
        """Saves the restraints to a convenient JSON file."""

        symmetry_restraints = [] if symmetry_restraints is None else symmetry_restraints
        wall_restraints = [] if wall_restraints is None else wall_restraints
        guest_restraints = [] if guest_restraints is None else guest_restraints

        restraints_dictionary = {
            "static": self._restraints_to_dict(static_restraints),
            "conformational": self._restraints_to_dict(conformational_restraints),
            "symmetry": self._restraints_to_dict(symmetry_restraints),
            "wall": self._restraints_to_dict(wall_restraints),
            "guest": self._restraints_to_dict(guest_restraints),
        }

        self.restraints_path = os.path.join(directory, "restraints.json")

        with open(self.restraints_path, "w") as file:
            json.dump(restraints_dictionary, file)
Ejemplo n.º 14
0
class DummyReplicableProtocol(Protocol):

    replicated_value_a = InputAttribute(docstring="",
                                        type_hint=Union[str, int, float],
                                        default_value=UNDEFINED)
    replicated_value_b = InputAttribute(docstring="",
                                        type_hint=Union[str, int, float],
                                        default_value=UNDEFINED)
    final_value = OutputAttribute(docstring="", type_hint=unit.Measurement)

    def _execute(self, directory, available_resources):
        pass
Ejemplo n.º 15
0
class DummyInputOutputProtocol(Protocol):

    input_value = InputAttribute(
        docstring="A dummy input.",
        type_hint=Union[str, int, float, pint.Quantity, pint.Measurement, list,
                        tuple, dict, set, frozenset, ],
        default_value=UNDEFINED,
    )
    output_value = OutputAttribute(
        docstring="A dummy output.",
        type_hint=Union[str, int, float, pint.Quantity, pint.Measurement, list,
                        tuple, dict, set, frozenset, ],
    )

    def _execute(self, directory, available_resources):
        self.output_value = self.input_value
Ejemplo n.º 16
0
class BaseEvaluateEnergies(Protocol, abc.ABC):
    """A base class for protocols which will re-evaluate the energy of a series
    of configurations for a given set of force field parameters.
    """

    thermodynamic_state = InputAttribute(
        docstring="The state to calculate the reduced potentials at.",
        type_hint=ThermodynamicState,
        default_value=UNDEFINED,
    )

    parameterized_system = InputAttribute(
        docstring=
        "The parameterized system object which encodes the systems potential "
        "energy function.",
        type_hint=ParameterizedSystem,
        default_value=UNDEFINED,
    )
    enable_pbc = InputAttribute(
        docstring="If true, periodic boundary conditions will be enabled.",
        type_hint=bool,
        default_value=True,
    )

    trajectory_file_path = InputAttribute(
        docstring="The path to the trajectory file which contains the "
        "configurations to calculate the energies of.",
        type_hint=str,
        default_value=UNDEFINED,
    )

    gradient_parameters = InputAttribute(
        docstring=
        "An optional list of parameters to differentiate the evaluated "
        "energies with respect to.",
        type_hint=list,
        default_value=lambda: list(),
    )

    output_observables = OutputAttribute(
        docstring=
        "An observable array which stores the reduced potentials potential "
        "energies evaluated at the specified state and using the specified system "
        "object for each configuration in the trajectory.",
        type_hint=ObservableFrame,
    )
Ejemplo n.º 17
0
class ExtractUncorrelatedData(Protocol, abc.ABC):
    """An abstract base class for protocols which will subsample
    a data set, yielding only equilibrated, uncorrelated data.
    """

    equilibration_index = InputAttribute(
        docstring=
        "The index in the data set after which the data is stationary.",
        type_hint=int,
        default_value=UNDEFINED,
        merge_behavior=InequalityMergeBehaviour.LargestValue,
    )
    statistical_inefficiency = InputAttribute(
        docstring="The statistical inefficiency in the data set.",
        type_hint=float,
        default_value=UNDEFINED,
        merge_behavior=InequalityMergeBehaviour.LargestValue,
    )

    number_of_uncorrelated_samples = OutputAttribute(
        docstring="The number of uncorrelated samples.", type_hint=int)
Ejemplo n.º 18
0
class DummyProtocol(Protocol):
    """A protocol whose only purpose is to return an input value as an output
    value."""

    input_value = InputAttribute(
        docstring="A dummy input.",
        type_hint=typing.Union[str, int, float, unit.Quantity,
                               unit.Measurement, Observable, ObservableArray,
                               ParameterGradient, ParameterGradientKey, list,
                               tuple, dict, set, frozenset, ],
        default_value=UNDEFINED,
    )
    output_value = OutputAttribute(
        docstring="A dummy output.",
        type_hint=typing.Union[str, int, float, unit.Quantity,
                               unit.Measurement, Observable, ObservableArray,
                               ParameterGradient, ParameterGradientKey, list,
                               tuple, dict, set, frozenset, ],
    )

    def _execute(self, directory, available_resources):
        self.output_value = self.input_value
Ejemplo n.º 19
0
class _PrepareAPRCoordinates(Protocol, abc.ABC):
    """The base class for protocols which will be used to prepare the coordinates
    for an APR calculation.
    """

    substance = InputAttribute(
        docstring="The substance which defines the host, guest and solvent.",
        type_hint=Substance,
        default_value=UNDEFINED,
    )
    complex_file_path = InputAttribute(
        docstring="The path to the file which the coordinates of the guest molecule"
        "bound to the host molecule.",
        type_hint=str,
        default_value=UNDEFINED,
    )

    output_coordinate_path = OutputAttribute(
        docstring="The file path to the system which has been correctly aligned to "
        "the z-axis.",
        type_hint=str,
    )
Ejemplo n.º 20
0
class BaseEnergyMinimisation(Protocol, abc.ABC):
    """A base class for protocols which will minimise the potential
    energy of a given system.
    """

    input_coordinate_file = InputAttribute(
        docstring="The coordinates to minimise.",
        type_hint=str,
        default_value=UNDEFINED)
    system_path = InputAttribute(
        docstring=
        "The path to the XML system object which defines the forces present "
        "in the system.",
        type_hint=str,
        default_value=UNDEFINED,
    )

    tolerance = InputAttribute(
        docstring=
        "The energy tolerance to which the system should be minimized.",
        type_hint=pint.Quantity,
        default_value=10 * unit.kilojoules / unit.mole,
    )
    max_iterations = InputAttribute(
        docstring="The maximum number of iterations to perform. If this is 0, "
        "minimization is continued until the results converge without regard to "
        "how many iterations it takes.",
        type_hint=int,
        default_value=0,
    )

    enable_pbc = InputAttribute(
        docstring="If true, periodic boundary conditions will be enabled.",
        type_hint=bool,
        default_value=True,
    )

    output_coordinate_file = OutputAttribute(
        docstring="The file path to the minimised coordinates.", type_hint=str)
Ejemplo n.º 21
0
class ComputeReferenceWork(Protocol):
    """Computes the reference state work."""

    thermodynamic_state = InputAttribute(
        docstring=
        "The thermodynamic state that the calculation was performed at.",
        type_hint=ThermodynamicState,
        default_value=UNDEFINED,
    )

    restraints_path = InputAttribute(
        docstring="The file path to the JSON file which contains the restraint "
        "definitions. This will usually have been generated by a "
        "`GenerateXXXRestraints` protocol.",
        type_hint=str,
        default_value=UNDEFINED,
    )

    result = OutputAttribute(docstring="The reference state work.",
                             type_hint=Observable)

    def _execute(self, directory, available_resources):

        from paprika.evaluator import Analyze

        restraints = ApplyRestraints.load_restraints(self.restraints_path)
        guest_restraints = restraints["guest"]

        self.result = Observable(
            unit.Measurement(
                -Analyze.compute_ref_state_work(
                    self.thermodynamic_state.temperature.to(
                        unit.kelvin).magnitude,
                    guest_restraints,
                ) * unit.kilocalorie / unit.mole,
                0 * unit.kilocalorie / unit.mole,
            ))
Ejemplo n.º 22
0
class FilterSubstanceByRole(Protocol):
    """A protocol which takes a substance as input, and returns a substance which only
    contains components whose role match a given criteria.
    """

    input_substance = InputAttribute(
        docstring="The substance to filter.",
        type_hint=Substance,
        default_value=UNDEFINED,
    )

    component_roles = InputAttribute(
        docstring="The roles to filter substance components against.",
        type_hint=list,
        default_value=UNDEFINED,
    )

    expected_components = InputAttribute(
        docstring="The number of components expected to remain after filtering. "
        "An exception is raised if this number is not matched.",
        type_hint=int,
        default_value=UNDEFINED,
        optional=True,
    )

    filtered_substance = OutputAttribute(
        docstring="The filtered substance.", type_hint=Substance
    )

    def _execute(self, directory, available_resources):

        filtered_components = []
        total_mole_fraction = 0.0

        for component in self.input_substance.components:

            if component.role not in self.component_roles:
                continue

            filtered_components.append(component)

            amounts = self.input_substance.get_amounts(component)

            for amount in amounts:

                if not isinstance(amount, MoleFraction):
                    continue

                total_mole_fraction += amount.value

        if self.expected_components != UNDEFINED and self.expected_components != len(
            filtered_components
        ):

            raise ValueError(
                f"The filtered substance does not contain the expected number of "
                f"components ({self.expected_components}) - {filtered_components}",
            )

        inverse_mole_fraction = (
            1.0 if np.isclose(total_mole_fraction, 0.0) else 1.0 / total_mole_fraction
        )

        self.filtered_substance = Substance()

        for component in filtered_components:

            amounts = self.input_substance.get_amounts(component)

            for amount in amounts:

                if isinstance(amount, MoleFraction):
                    amount = MoleFraction(amount.value * inverse_mole_fraction)

                self.filtered_substance.add_component(component, amount)

    def validate(self, attribute_type=None):

        super(FilterSubstanceByRole, self).validate(attribute_type)
        assert all(isinstance(x, Component.Role) for x in self.component_roles)
Ejemplo n.º 23
0
class AddDummyAtoms(Protocol):
    """A protocol which will add the reference 'dummy' atoms to a parameterised
    system. This protocol assumes the host / complex has already been correctly
    aligned to the z-axis and has been placed at the origin.
    """

    substance = InputAttribute(
        docstring="The substance which defines the host, guest and solvent.",
        type_hint=Substance,
        default_value=UNDEFINED,
    )

    offset = InputAttribute(
        docstring="The distance to offset the dummy atoms from the origin (0, 0, 0) "
        "backwards along the z-axis.",
        type_hint=unit.Quantity,
        default_value=UNDEFINED,
    )

    input_coordinate_path = InputAttribute(
        docstring="The file path to the coordinates which the dummy atoms "
        "should be added to.",
        type_hint=str,
        default_value=UNDEFINED,
    )
    input_system = InputAttribute(
        docstring="The parameterized system which the dummy atoms "
        "should be added to.",
        type_hint=ParameterizedSystem,
        default_value=UNDEFINED,
    )

    output_coordinate_path = OutputAttribute(
        docstring="The file path to the coordinates which include the added dummy "
        "atoms.",
        type_hint=str,
    )
    output_system = OutputAttribute(
        docstring="The parameterized system which include the added dummy atoms.",
        type_hint=ParameterizedSystem,
    )

    def _execute(self, directory, available_resources):

        import parmed.geometry
        from paprika.evaluator import Setup
        from simtk.openmm import NonbondedForce, XmlSerializer, app

        # Extract the host atoms to determine the offset of the dummy atoms.
        # noinspection PyTypeChecker
        input_structure: parmed.Structure = parmed.load_file(
            self.input_coordinate_path, structure=True
        )

        # Add the dummy atoms to the structure.
        offset = self.offset.to(unit.angstrom).magnitude

        Setup.add_dummy_atoms_to_structure(
            input_structure,
            [
                numpy.array([0, 0, -offset]),
                numpy.array([0, 0, -3.0 - offset]),
                numpy.array([0, 2.2, -5.2 - offset]),
            ],
            numpy.zeros(3),
        )

        # Shift the structure to avoid issues with the PBC
        input_structure.coordinates += numpy.array(
            [
                input_structure.box[0] * 0.5,
                input_structure.box[1] * 0.5,
                -input_structure.coordinates[-1, 2] + 1.0,
            ]
        )

        # Save the final coordinates.
        self.output_coordinate_path = os.path.join(directory, "output.pdb")

        with open(self.output_coordinate_path, "w") as file:
            app.PDBFile.writeFile(
                input_structure.topology, input_structure.positions, file, True
            )

        # Add the dummy atoms to the system.
        system = self.input_system.system

        for _ in range(3):
            system.addParticle(mass=207)

        for force_index in range(system.getNumForces()):

            force = system.getForce(force_index)

            if not isinstance(force, NonbondedForce):
                continue

            force.addParticle(0.0, 1.0, 0.0)
            force.addParticle(0.0, 1.0, 0.0)
            force.addParticle(0.0, 1.0, 0.0)

        output_system_path = os.path.join(directory, "output.xml")

        with open(output_system_path, "w") as file:
            file.write(XmlSerializer.serialize(system))

        self.output_system = ParameterizedSystem(
            self.input_system.substance,
            self.input_system.force_field,
            self.output_coordinate_path,
            output_system_path,
        )
Ejemplo n.º 24
0
class ConditionalGroup(ProtocolGroup):
    """A collection of protocols which are to execute until
    a given condition is met.
    """
    class Condition(AttributeClass):
        """Defines a specific condition which must be met of the form
        `left_hand_value` [TYPE] `right_hand_value`, where `[TYPE]` may
        be less than or greater than.
        """
        @unique
        class Type(Enum):
            """The available condition types."""

            LessThan = "lessthan"
            GreaterThan = "greaterthan"

        left_hand_value = Attribute(
            docstring="The left-hand value to compare.",
            type_hint=typing.Union[int, float, pint.Quantity],
        )
        right_hand_value = Attribute(
            docstring="The right-hand value to compare.",
            type_hint=typing.Union[int, float, pint.Quantity],
        )

        type = Attribute(
            docstring="The right-hand value to compare.",
            type_hint=Type,
            default_value=Type.LessThan,
        )

        def __eq__(self, other):

            return (type(self) == type(other)
                    and self.left_hand_value == other.left_hand_value
                    and self.right_hand_value == other.right_hand_value
                    and self.type == other.type)

        def __ne__(self, other):
            return not self.__eq__(other)

        def __str__(self):
            return f"{self.left_hand_value} {self.type} {self.right_hand_value}"

        def __repr__(self):
            return f"<Condition {str(self)}>"

    conditions = InputAttribute(
        docstring="The conditions which must be satisfied before"
        "the group will cleanly exit.",
        type_hint=list,
        default_value=[],
        merge_behavior=MergeBehaviour.Custom,
    )

    current_iteration = OutputAttribute(
        docstring=
        "The current number of iterations this group has performed while "
        "attempting to satisfy the specified conditions. This value starts "
        "from one.",
        type_hint=int,
    )
    max_iterations = InputAttribute(
        docstring=
        "The maximum number of iterations to run for to try and satisfy the "
        "groups conditions.",
        type_hint=int,
        default_value=100,
        merge_behavior=InequalityMergeBehaviour.LargestValue,
    )

    def __init__(self, protocol_id):
        super(ConditionalGroup, self).__init__(protocol_id)

        # We disable checkpoint, as protocols may change their inputs
        # at each iteration and hence their checkpointed outputs may
        # be invalidated.
        self._enable_checkpointing = False

    def _evaluate_condition(self, condition):
        """Evaluates whether a condition has been successfully met.

        Parameters
        ----------
        condition: ConditionalGroup.Condition
            The condition to evaluate.

        Returns
        -------
        bool
            True if the condition has been met.
        """

        left_hand_value = condition.left_hand_value
        right_hand_value = condition.right_hand_value

        if isinstance(condition.left_hand_value, ProtocolPath):
            left_hand_value = self.get_value(condition.left_hand_value)
        if isinstance(condition.right_hand_value, ProtocolPath):
            right_hand_value = self.get_value(condition.right_hand_value)

        if left_hand_value == UNDEFINED or right_hand_value == UNDEFINED:
            return False

        if isinstance(right_hand_value, pint.Quantity) and isinstance(
                left_hand_value, pint.Quantity):
            right_hand_value = right_hand_value.to(left_hand_value.units)

        logger.info(f"Evaluating condition for protocol {self.id}: "
                    f"{left_hand_value} {condition.type} {right_hand_value}")

        if condition.type == self.Condition.Type.LessThan:
            return left_hand_value < right_hand_value
        elif condition.type == self.Condition.Type.GreaterThan:
            return left_hand_value > right_hand_value

        raise NotImplementedError()

    @staticmethod
    def _write_checkpoint(directory, current_iteration):
        """Creates a checkpoint file for this group so that it can continue
        executing where it left off if it was killed for some reason (e.g the
        worker it was running on was killed).

        Parameters
        ----------
        directory: str
            The path to the working directory of this protocol
        current_iteration: int
            The number of iterations this group has performed so far.
        """

        checkpoint_path = path.join(directory, "checkpoint.json")

        with open(checkpoint_path, "w") as file:
            json.dump({"current_iteration": current_iteration}, file)

    @staticmethod
    def _read_checkpoint(directory):
        """Creates a checkpoint file for this group so that it can continue
        executing where it left off if it was killed for some reason (e.g the
        worker it was running on was killed).

        Parameters
        ----------
        directory: str
            The path to the working directory of this protocol

        Returns
        -------
        int
            The number of iterations this group has performed so far.
        """

        current_iteration = 0
        checkpoint_path = path.join(directory, "checkpoint.json")

        if not path.isfile(checkpoint_path):
            return current_iteration

        with open(checkpoint_path, "r") as file:

            checkpoint_dictionary = json.load(file)
            current_iteration = checkpoint_dictionary["current_iteration"]

        return current_iteration

    def _execute(self, directory, available_resources):
        """Executes the protocols within this groups

        Parameters
        ----------
        directory : str
            The root directory in which to run the protocols
        available_resources: ComputeResources
            The resources available to execute on.

        Returns
        -------
        bool
            True if all the protocols execute correctly.
        """

        should_continue = True
        self.current_iteration = self._read_checkpoint(directory)

        # Keep a track of the original protocol schemas
        original_schemas = [x.schema for x in self._protocols]

        while should_continue:

            # Create a checkpoint file so we can pick off where
            # we left off if this execution fails due to time
            # constraints for e.g.
            self._write_checkpoint(directory, self.current_iteration)
            self.current_iteration += 1

            # Reset the protocols from their schemas - this will ensure
            # that at each iteration protocols which take their inputs from
            # other protocols in the group get their inputs updated correctly.
            for protocol, schema in zip(self._protocols, original_schemas):
                protocol.schema = schema

            super(ConditionalGroup, self)._execute(directory,
                                                   available_resources)

            conditions_met = True

            for condition in self._conditions:

                # Check to see if we have reached our goal.
                if not self._evaluate_condition(condition):
                    conditions_met = False

            if conditions_met:

                logger.info(
                    f"{self.id} loop finished after {self.current_iteration} iterations"
                )
                return

            if self.current_iteration >= self.max_iterations:
                raise RuntimeError(f"{self.id} failed to converge.")

            logger.info(
                f"{self.id} criteria not yet met after {self.current_iteration} "
                f"iterations")

    def merge(self, other):
        """Merges another ProtocolGroup with this one. The id
        of this protocol will remain unchanged.

        It is assumed that can_merge has already returned that
        these protocol groups are compatible to be merged together.

        Parameters
        ----------
        other: ConditionalGroup
            The protocol to merge into this one.
        """
        merged_ids = super(ConditionalGroup, self).merge(other)

        for condition in other.conditions:

            if isinstance(condition.left_hand_value, ProtocolPath):
                condition.left_hand_value.replace_protocol(other.id, self.id)
            if isinstance(condition.right_hand_value, ProtocolPath):
                condition.right_hand_value.replace_protocol(other.id, self.id)

            for merged_id in merged_ids:

                if isinstance(condition.left_hand_value, ProtocolPath):
                    condition.left_hand_value.replace_protocol(
                        merged_id, merged_ids[merged_id])
                if isinstance(condition.right_hand_value, ProtocolPath):
                    condition.right_hand_value.replace_protocol(
                        merged_id, merged_ids[merged_id])

            self.add_condition(condition)

        return merged_ids

    def add_condition(self, condition_to_add):
        """Adds a condition to this groups list of conditions if it
        not already in the condition list.

        Parameters
        ----------
        condition_to_add: :obj:`ConditionalGroup.Condition`
            The condition to add.
        """

        for condition in self.conditions:

            if condition == condition_to_add:
                return

        self.conditions.append(condition_to_add)

    def get_value_references(self, input_path):

        if input_path.property_name != "conditions":
            return super(ConditionalGroup,
                         self).get_value_references(input_path)

        value_references = {}

        for index, condition in enumerate(self.conditions):

            if isinstance(condition.left_hand_value, ProtocolPath):

                source_path = ProtocolPath(
                    "conditions[{}].left_hand_value".format(index))
                value_references[source_path] = condition.left_hand_value

            if isinstance(condition.right_hand_value, ProtocolPath):

                source_path = ProtocolPath(
                    "conditions[{}].right_hand_value".format(index))
                value_references[source_path] = condition.right_hand_value

        return value_references
Ejemplo n.º 25
0
class ZeroGradients(Protocol, abc.ABC):
    """Zeros the gradients of an observable with respect to a specified set of force
    field parameters.
    """

    input_observables = InputAttribute(
        docstring="The observable to set the gradients of.",
        type_hint=Union[Observable, ObservableArray],
        default_value=UNDEFINED,
    )

    force_field_path = InputAttribute(
        docstring="The path to the force field which contains the parameters to "
        "differentiate the observable with respect to. This is many used to get the "
        "correct units for the parameters.",
        type_hint=str,
        default_value=UNDEFINED,
    )
    gradient_parameters = InputAttribute(
        docstring="The parameters to zero the gradient with respect to.",
        type_hint=list,
        default_value=lambda: list(),
    )

    output_observables = OutputAttribute(
        docstring="The observable with zeroed gradients.",
        type_hint=Union[Observable, ObservableArray],
    )

    def _execute(self, directory, available_resources):

        force_field_source = ForceFieldSource.from_json(self.force_field_path)

        if not isinstance(force_field_source, SmirnoffForceFieldSource):
            raise ValueError("Only SMIRNOFF force fields are supported.")

        force_field = force_field_source.to_force_field()

        parameter_units = {
            gradient_key: openmm_quantity_to_pint(
                getattr(
                    force_field.get_parameter_handler(
                        gradient_key.tag).parameters[gradient_key.smirks],
                    gradient_key.attribute,
                )).units
            for gradient_key in self.gradient_parameters
        }

        self.input_observables.clear_gradients()

        if isinstance(self.input_observables, Observable):

            self.output_observables = Observable(
                value=self.input_observables.value,
                gradients=[
                    ParameterGradient(
                        key=gradient_key,
                        value=(0.0 * self.input_observables.value.units /
                               parameter_units[gradient_key]),
                    ) for gradient_key in self.gradient_parameters
                ],
            )

        elif isinstance(self.input_observables, ObservableArray):

            self.output_observables = ObservableArray(
                value=self.input_observables.value,
                gradients=[
                    ParameterGradient(
                        key=gradient_key,
                        value=(
                            numpy.zeros(self.input_observables.value.shape) *
                            self.input_observables.value.units /
                            parameter_units[gradient_key]),
                    ) for gradient_key in self.gradient_parameters
                ],
            )

        else:
            raise NotImplementedError()
Ejemplo n.º 26
0
class BaseSimulation(Protocol, abc.ABC):
    """A base class for protocols which will perform a molecular
    simulation in a given ensemble and at a specified state.
    """

    steps_per_iteration = InputAttribute(
        docstring="The number of steps to propogate the system by at "
        "each iteration. The total number of steps performed "
        "by this protocol will be `total_number_of_iterations * "
        "steps_per_iteration`.",
        type_hint=int,
        merge_behavior=InequalityMergeBehaviour.LargestValue,
        default_value=1000000,
    )
    total_number_of_iterations = InputAttribute(
        docstring="The number of times to propogate the system forward by the "
        "`steps_per_iteration` number of steps. The total number of "
        "steps performed by this protocol will be `total_number_of_iterations * "
        "steps_per_iteration`.",
        type_hint=int,
        merge_behavior=InequalityMergeBehaviour.LargestValue,
        default_value=1,
    )

    output_frequency = InputAttribute(
        docstring=
        "The frequency (in number of steps) with which to write to the "
        "output statistics and trajectory files.",
        type_hint=int,
        merge_behavior=InequalityMergeBehaviour.SmallestValue,
        default_value=3000,
    )
    checkpoint_frequency = InputAttribute(
        docstring=
        "The frequency (in multiples of `output_frequency`) with which to "
        "write to a checkpoint file, e.g. if `output_frequency=100` and "
        "`checkpoint_frequency==2`, a checkpoint file would be saved every "
        "200 steps.",
        type_hint=int,
        merge_behavior=InequalityMergeBehaviour.SmallestValue,
        optional=True,
        default_value=10,
    )

    timestep = InputAttribute(
        docstring="The timestep to evolve the system by at each step.",
        type_hint=pint.Quantity,
        merge_behavior=InequalityMergeBehaviour.SmallestValue,
        default_value=2.0 * unit.femtosecond,
    )

    thermodynamic_state = InputAttribute(
        docstring="The thermodynamic conditions to simulate under",
        type_hint=ThermodynamicState,
        default_value=UNDEFINED,
    )
    ensemble = InputAttribute(
        docstring="The thermodynamic ensemble to simulate in.",
        type_hint=Ensemble,
        default_value=Ensemble.NPT,
    )

    thermostat_friction = InputAttribute(
        docstring="The thermostat friction coefficient.",
        type_hint=pint.Quantity,
        merge_behavior=InequalityMergeBehaviour.SmallestValue,
        default_value=1.0 / unit.picoseconds,
    )

    input_coordinate_file = InputAttribute(
        docstring="The file path to the starting coordinates.",
        type_hint=str,
        default_value=UNDEFINED,
    )
    system_path = InputAttribute(
        docstring=
        "A path to the XML system object which defines the forces present "
        "in the system.",
        type_hint=str,
        default_value=UNDEFINED,
    )

    enable_pbc = InputAttribute(
        docstring="If true, periodic boundary conditions will be enabled.",
        type_hint=bool,
        default_value=True,
    )

    allow_gpu_platforms = InputAttribute(
        docstring=
        "If true, the simulation will be performed using a GPU if available, "
        "otherwise it will be constrained to only using CPUs.",
        type_hint=bool,
        default_value=True,
    )
    high_precision = InputAttribute(
        docstring="If true, the simulation will be run using double precision.",
        type_hint=bool,
        default_value=False,
    )

    output_coordinate_file = OutputAttribute(
        docstring=
        "The file path to the coordinates of the final system configuration.",
        type_hint=str,
    )
    trajectory_file_path = OutputAttribute(
        docstring=
        "The file path to the trajectory sampled during the simulation.",
        type_hint=str,
    )
    statistics_file_path = OutputAttribute(
        docstring=
        "The file path to the statistics sampled during the simulation.",
        type_hint=str,
    )
Ejemplo n.º 27
0
class ApplyRestraints(Protocol):
    """A protocol which will apply the restraints defined in a restraints JSON
    file to a specified system.
    """

    restraints_path = InputAttribute(
        docstring="The file path to the JSON file which contains the restraint "
        "definitions. This will usually have been generated by a "
        "`GenerateXXXRestraints` protocol.",
        type_hint=str,
        default_value=UNDEFINED,
    )

    phase = InputAttribute(
        docstring="The APR phase to take the restraints from.",
        type_hint=str,
        default_value=UNDEFINED,
    )
    window_index = InputAttribute(
        docstring="The index of the window to take the restraints from.",
        type_hint=int,
        default_value=UNDEFINED,
    )

    input_system = InputAttribute(
        docstring="The parameterized system which the restraints should be added "
        "to.",
        type_hint=ParameterizedSystem,
        default_value=UNDEFINED,
    )

    output_system = OutputAttribute(
        docstring="The parameterized system which now includes the added restraints.",
        type_hint=ParameterizedSystem,
    )

    @classmethod
    def _parse_restraints(cls, restraint_dictionaries):
        """Parses the dictionary representations of a list of `paprika` restraint
        objects into a list of full restraint objects."""

        from paprika.restraints import DAT_restraint

        restraints = []

        for restraint_dictionary in restraint_dictionaries:

            restraint = DAT_restraint()
            restraint.__dict__ = restraint_dictionary

            properties = [
                "mask1",
                "mask2",
                "mask3",
                "mask4",
                "topology",
                "instances",
                "custom_restraint_values",
                "auto_apr",
                "continuous_apr",
                "attach",
                "pull",
                "release",
                "amber_index",
            ]

            for class_property in properties:

                if f"_{class_property}" in restraint.__dict__.keys():
                    restraint.__dict__[class_property] = restraint.__dict__[
                        f"_{class_property}"
                    ]

            restraints.append(restraint)

        return restraints

    @classmethod
    def load_restraints(cls, file_path: str):
        """Loads a set of `paprika` restraint objects from a JSON file.

        Parameters
        ----------
        file_path
            The path to the JSON serialized restraints.

        Returns
        -------
            The loaded `paprika` restraint objects.
        """

        from paprika.io import json_numpy_obj_hook

        with open(file_path) as file:
            restraints_dictionary = json.load(file, object_hook=json_numpy_obj_hook)

        restraints = {
            restraint_type: cls._parse_restraints(restraints_dictionary[restraint_type])
            for restraint_type in restraints_dictionary
        }

        return restraints

    def _execute(self, directory, available_resources):

        from paprika.restraints.openmm import (
            apply_dat_restraint,
            apply_positional_restraints,
        )
        from simtk.openmm import XmlSerializer

        # Load in the system to add the restraints to.
        system = self.input_system.system

        # Define a custom force group per type of restraint to help
        # with debugging / analysis.
        force_groups = {
            "static": 10,
            "conformational": 11,
            "guest": 12,
            "symmetry": 13,
            "wall": 14,
        }

        # Apply the serialized restraints.
        restraints = self.load_restraints(self.restraints_path)

        for restraint_type in force_groups:

            if restraint_type not in restraints:
                continue

            for restraint in restraints[restraint_type]:

                apply_dat_restraint(
                    system,
                    restraint,
                    self.phase,
                    self.window_index,
                    flat_bottom=restraint_type in ["symmetry", "wall"],
                    force_group=force_groups[restraint_type],
                )

        # Apply the positional restraints to the dummy atoms.
        apply_positional_restraints(
            self.input_system.topology_path, system, force_group=15
        )

        output_system_path = os.path.join(directory, "output.xml")

        with open(output_system_path, "w") as file:
            file.write(XmlSerializer.serialize(system))

        self.output_system = ParameterizedSystem(
            substance=self.input_system.substance,
            force_field=self.input_system.force_field,
            topology_path=self.input_system.topology_path,
            system_path=output_system_path,
        )
Ejemplo n.º 28
0
class WeightByMoleFraction(Protocol):
    """Multiplies a value by the mole fraction of a component
    in a `Substance`.
    """

    value = InputAttribute(
        docstring="The value to be weighted.",
        type_hint=typing.Union[
            float, int, pint.Measurement, pint.Quantity, ParameterGradient
        ],
        default_value=UNDEFINED,
    )

    component = InputAttribute(
        docstring="The component whose mole fraction to weight by.",
        type_hint=Substance,
        default_value=UNDEFINED,
    )
    full_substance = InputAttribute(
        docstring="The full substance which describes the mole fraction of the component.",
        type_hint=Substance,
        default_value=UNDEFINED,
    )

    weighted_value = OutputAttribute(
        "The value weighted by the `component`s mole fraction as determined from the "
        "`full_substance`.",
        type_hint=typing.Union[
            float, int, pint.Measurement, pint.Quantity, ParameterGradient
        ],
    )

    def _weight_values(self, mole_fraction):
        """Weights a value by a components mole fraction.

        Parameters
        ----------
        mole_fraction: float
            The mole fraction to weight by.

        Returns
        -------
        float, int, pint.Measurement, pint.Quantity, ParameterGradient
            The weighted value.
        """
        return self.value * mole_fraction

    def _execute(self, directory, available_resources):

        assert len(self.component.components) == 1

        main_component = self.component.components[0]
        amounts = self.full_substance.get_amounts(main_component)

        if len(amounts) != 1:

            raise ValueError(
                f"More than one type of amount was defined for component "
                f"{main_component}. Only a single mole fraction must be defined.",
            )

        amount = next(iter(amounts))

        if not isinstance(amount, MoleFraction):

            raise ValueError(
                f"The component {main_component} was given as an exact amount, and "
                f"not a mole fraction"
            )

        self.weighted_value = self._weight_values(amount.value)
Ejemplo n.º 29
0
class CentralDifferenceGradient(Protocol):
    """A protocol which employs the central diference method
    to estimate the gradient of an observable A, such that

    grad = (A(x-h) - A(x+h)) / (2h)

    Notes
    -----
    The `values` input must either be a list of pint.Quantity, a ProtocolPath to a list
    of pint.Quantity, or a list of ProtocolPath which each point to a pint.Quantity.
    """

    parameter_key = InputAttribute(
        docstring="The key of the parameter to differentiate with respect to.",
        type_hint=ParameterGradientKey,
        default_value=UNDEFINED,
    )

    reverse_observable_value = InputAttribute(
        docstring="The value of the observable evaluated using the parameters"
        "perturbed in the reverse direction.",
        type_hint=typing.Union[pint.Quantity, pint.Measurement],
        default_value=UNDEFINED,
    )
    forward_observable_value = InputAttribute(
        docstring="The value of the observable evaluated using the parameters"
        "perturbed in the forward direction.",
        type_hint=typing.Union[pint.Quantity, pint.Measurement],
        default_value=UNDEFINED,
    )

    reverse_parameter_value = InputAttribute(
        docstring=
        "The value of the parameter perturbed in the reverse direction.",
        type_hint=pint.Quantity,
        default_value=UNDEFINED,
    )
    forward_parameter_value = InputAttribute(
        docstring=
        "The value of the parameter perturbed in the forward direction.",
        type_hint=pint.Quantity,
        default_value=UNDEFINED,
    )

    gradient = OutputAttribute(docstring="The estimated gradient",
                               type_hint=ParameterGradient)

    def _execute(self, directory, available_resources):

        if self.forward_parameter_value < self.reverse_parameter_value:

            raise ValueError(
                f"The forward parameter value ({self.forward_parameter_value}) must "
                f"be larger than the reverse value ({self.reverse_parameter_value})."
            )

        reverse_value = self.reverse_observable_value
        forward_value = self.forward_observable_value

        if isinstance(reverse_value, pint.Measurement):
            reverse_value = reverse_value.value

        if isinstance(forward_value, pint.Measurement):
            forward_value = forward_value.value

        gradient = (forward_value - reverse_value) / (
            self.forward_parameter_value - self.reverse_parameter_value)

        self.gradient = ParameterGradient(self.parameter_key, gradient)
Ejemplo n.º 30
0
class BaseGradientPotentials(Protocol, abc.ABC):
    """A base class for protocols which will evaluate the reduced potentials of a
    series of configurations using a set of force field parameters which have been
    slightly increased and slightly decreased. These are mainly useful when
    estimating gradients with respect to force field parameters using the central
    difference method.
    """

    force_field_path = InputAttribute(
        docstring="The path to the force field which contains the parameters to "
        "differentiate the observable with respect to. When reweighting "
        "observables, this should be the `target` force field.",
        type_hint=str,
        default_value=UNDEFINED,
    )
    statistics_path = InputAttribute(
        docstring="The path to a statistics array containing potentials "
        "evaluated at each frame of the trajectory using the input "
        "`force_field_path` and at the input `thermodynamic_state`.",
        type_hint=str,
        default_value=UNDEFINED,
    )
    thermodynamic_state = InputAttribute(
        docstring="The thermodynamic state to estimate the gradients at. When "
        "reweighting observables, this should be the `target` state.",
        type_hint=ThermodynamicState,
        default_value=UNDEFINED,
    )

    substance = InputAttribute(
        docstring=
        "The substance which describes the composition of the system.",
        type_hint=Substance,
        default_value=UNDEFINED,
    )

    coordinate_file_path = InputAttribute(
        docstring=
        "A path to a PDB coordinate file which describes the topology of "
        "the system.",
        type_hint=str,
        default_value=UNDEFINED,
    )
    trajectory_file_path = InputAttribute(
        docstring="A path to the trajectory of configurations",
        type_hint=str,
        default_value=UNDEFINED,
    )

    enable_pbc = InputAttribute(
        docstring="If true, periodic boundary conditions will be enabled when "
        "re-evaluating the reduced potentials.",
        type_hint=bool,
        default_value=True,
    )

    parameter_key = InputAttribute(
        docstring="The key of the parameter to differentiate with respect to.",
        type_hint=ParameterGradientKey,
        default_value=UNDEFINED,
    )
    perturbation_scale = InputAttribute(
        docstring="The amount to perturb the parameter by, such that "
        "p_new = p_old * (1 +/- `perturbation_scale`)",
        type_hint=float,
        default_value=1.0e-4,
    )

    use_subset_of_force_field = InputAttribute(
        docstring="If true, the reduced potentials will be estimated using "
        "a system which only contains the parameters of interest, e.g. if the "
        "gradient of interest is with respect to the VdW epsilon parameter, then "
        "all valence / electrostatic terms will be ignored.",
        type_hint=bool,
        default_value=True,
    )

    effective_sample_indices = InputAttribute(
        docstring=
        "This a placeholder input which is not currently implemented.",
        type_hint=list,
        default_value=UNDEFINED,
        optional=True,
    )

    reverse_potentials_path = OutputAttribute(
        docstring="A file path to the energies evaluated using the parameters"
        "perturbed in the reverse direction.",
        type_hint=str,
    )
    forward_potentials_path = OutputAttribute(
        docstring="A file path to the energies evaluated using the parameters"
        "perturbed in the forward direction.",
        type_hint=str,
    )
    reverse_parameter_value = OutputAttribute(
        docstring=
        "The value of the parameter perturbed in the reverse direction.",
        type_hint=pint.Quantity,
    )
    forward_parameter_value = OutputAttribute(
        docstring=
        "The value of the parameter perturbed in the forward direction.",
        type_hint=pint.Quantity,
    )