Ejemplo n.º 1
0
def delete_dom_act_Pi(game, i):
    no_a_game = list(
        game.shape)  #will contain number of actions available for each player
    no_a_game.pop(
    )  #removes last element of list which simply was n: the number of payoffs in each action profile
    #as the first number is number of actions of last player etc., we turn the list around
    no_a_game = no_a_game[::-1]
    no_a_i = no_a_game.pop(
        i
    )  #remove the number of actions of player i from no_a_game and put it in no_a_i
    if no_a_i == 1:  #if a single action remains it cannot be dominated
        return game
    var_no = np.prod(no_a_game)  #size of the support of mu
    if var_no == 1:  #special case: the support of mu has a single elment
        return del_dom_a_Pi_point_belief(game, i, no_a_i)
    temp_game = game
    f = [0.] * var_no  #dummy objective used below
    lb = [0.] * var_no
    ub = [1.] * var_no
    Aeq = [[1.] * var_no]
    beq = (1., )
    j = 0
    while j < no_a_i:
        u_action = payoffi_builder(game, j, i)
        A = []
        b = []
        k = 0
        while k < no_a_i:
            u_other_action = payoffi_builder(game, k, i)
            A.append(u_other_action - u_action)  #elementwise difference
            b.append(0.)
            k += 1
        p = LP(
            f, A=A, b=b, lb=lb, ub=ub, Aeq=Aeq, beq=beq
        )  #we use the artificial minimization problem under the constraint that action gives a weakly higher payoff than any other action; if no feasible solution is obtained than action is dominated
        p.iprint = -1
        r = p.minimize('pclp')
        if r.stopcase != 1:  #if no feasible solution was obtained then action is dominated...
            temp_game = np.delete(
                temp_game, j, n - i - 1
            )  #...and therefore action j is removed; recall that players are "in the wrong order"
            count = 0
            z = -1
            while count <= j:
                z += 1
                if undominated[i][z] != -1:
                    count += 1
            undominated[i][z] = -1
        j += 1
    return temp_game
Ejemplo n.º 2
0
def delete_dom_act_Pi(game,i):
    no_a_game = list(game.shape) #will contain number of actions available for each player
    no_a_game.pop()#removes last element of list which simply was n: the number of payoffs in each action profile
    #as the first number is number of actions of last player etc., we turn the list around
    no_a_game = no_a_game[::-1]
    no_a_i = no_a_game.pop(i)#remove the number of actions of player i from no_a_game and put it in no_a_i
    if no_a_i==1:#if a single action remains it cannot be dominated
        return game
    var_no = np.prod(no_a_game)#size of the support of mu
    if var_no == 1:#special case: the support of mu has a single elment
        return del_dom_a_Pi_point_belief(game, i,no_a_i)
    temp_game = game
    f = [0.]*var_no   #dummy objective used below
    lb = [0.]*var_no
    ub = [1.]*var_no
    Aeq = [[1.]*var_no]
    beq = (1.,)
    j = 0
    while j<no_a_i:
        u_action = payoffi_builder(game,j,i)
        A = []
        b = []
        k = 0
        while k<no_a_i:
            u_other_action = payoffi_builder(game,k,i)
            A.append(u_other_action - u_action)#elementwise difference
            b.append(0.)
            k+=1
        p = LP(f, A=A,b=b,lb=lb,ub=ub,Aeq=Aeq,beq=beq)#we use the artificial minimization problem under the constraint that action gives a weakly higher payoff than any other action; if no feasible solution is obtained than action is dominated
        p.iprint = -1
        r = p.minimize('pclp')
        if r.stopcase!=1:#if no feasible solution was obtained then action is dominated...
            temp_game = np.delete(temp_game,j,n-i-1)#...and therefore action j is removed; recall that players are "in the wrong order"
            count = 0
            z = -1
            while count<=j:
                z+=1
                if undominated[i][z]!=-1 :
                    count+=1 
            undominated[i][z] = -1
        j+=1
    return temp_game
Ejemplo n.º 3
0
    def __solver__(self, p):
        n = p.n
        x0 = copy(p.x0)
        xPrev = x0.copy()
        xf = x0.copy()
        xk = x0.copy()
        p.xk = x0.copy()

        f0 = p.f(x0)

        fk = f0
        ff = f0
        p.fk = fk

        df0 = p.df(x0)

        #####################################################################

        ##        #handling box-bounded problems
        ##        if p.__isNoMoreThanBoxBounded__():
        ##            for k in range(int(p.maxIter)):
        ##
        ##        #end of handling box-bounded problems
        isBB = p.__isNoMoreThanBoxBounded__()
        ##        isBB = 0
        H = diag(ones(p.n))
        if not p.userProvided.c:
            p.c = lambda x: array([])
            p.dc = lambda x: array([]).reshape(0, p.n)
        if not p.userProvided.h:
            p.h = lambda x: array([])
            p.dh = lambda x: array([]).reshape(0, p.n)

        p.use_subproblem = 'QP'

        #p.use_subproblem = 'LLSP'

        for k in range(p.maxIter + 4):
            if isBB:
                f0 = p.f(xk)
                df = p.df(xk)
                direction = -df
                f1 = p.f(xk + direction)
                ind_l = direction <= p.lb - xk
                direction[ind_l] = (p.lb - xk)[ind_l]
                ind_u = direction >= p.ub - xk
                direction[ind_u] = (p.ub - xk)[ind_u]
                ff = p.f(xk + direction)
##                print 'f0', f0, 'f1', f1, 'ff', ff
            else:

                mr = p.getMaxResidual(xk)
                if mr > p.contol: mr_grad = p.getMaxConstrGradient(xk)
                lb = p.lb - xk  #- p.contol/2
                ub = p.ub - xk  #+ p.contol/2
                c, dc, h, dh, df = p.c(xk), p.dc(xk), p.h(xk), p.dh(xk), p.df(
                    xk)
                A, Aeq = vstack((dc, p.A)), vstack((dh, p.Aeq))
                b = concatenate((-c, p.b - p.matmult(p.A, xk)))  #+ p.contol/2
                beq = concatenate((-h, p.beq - p.matmult(p.Aeq, xk)))

                if b.size != 0:
                    isFinite = isfinite(b)
                    ind = where(isFinite)[0]
                    A, b = A[ind], b[ind]
                if beq.size != 0:
                    isFinite = isfinite(beq)
                    ind = where(isFinite)[0]
                    Aeq, beq = Aeq[ind], beq[ind]

                if p.use_subproblem == 'LP':  #linear
                    linprob = LP(df, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)
                    linprob.iprint = -1
                    r2 = linprob.solve(
                        'cvxopt_glpk')  # TODO: replace lpSolve by autoselect
                    if r2.istop <= 0:
                        p.istop = -12
                        p.msg = "failed to solve LP subproblem"
                        return
                elif p.use_subproblem == 'QP':  #quadratic
                    qp = QP(H=H,
                            f=df,
                            A=A,
                            Aeq=Aeq,
                            b=b,
                            beq=beq,
                            lb=lb,
                            ub=ub)
                    qp.iprint = -1
                    r2 = qp.solve(
                        'cvxopt_qp')  # TODO: replace solver by autoselect
                    #r2 = qp.solve('qld') # TODO: replace solver by autoselect
                    if r2.istop <= 0:
                        for i in range(4):
                            if p.debug:
                                p.warn("iter " + str(k) + ": attempt Num " +
                                       str(i) +
                                       " to solve QP subproblem has failed")
                            #qp.f += 2*N*sum(qp.A,0)
                            A2 = vstack((A, Aeq, -Aeq))
                            b2 = concatenate(
                                (b, beq, -beq)) + pow(10, i) * p.contol
                            qp = QP(H=H, f=df, A=A2, b=b2, iprint=-5)
                            qp.lb = lb - pow(10, i) * p.contol
                            qp.ub = ub + pow(10, i) * p.contol
                            # I guess lb and ub don't matter here
                            try:
                                r2 = qp.solve(
                                    'cvxopt_qp'
                                )  # TODO: replace solver by autoselect
                            except:
                                r2.istop = -11
                            if r2.istop > 0: break
                        if r2.istop <= 0:
                            p.istop = -11
                            p.msg = "failed to solve QP subproblem"
                            return
                elif p.use_subproblem == 'LLSP':
                    direction_c = getConstrDirection(p,
                                                     xk,
                                                     regularization=1e-7)
                else:
                    p.err('incorrect or unknown subproblem')

            if isBB:
                X0 = xk.copy()
                N = 0
                result, newX = chLineSearch(p, X0, direction, N, isBB)
            elif p.use_subproblem != 'LLSP':
                duals = r2.duals
                N = 1.05 * abs(duals).sum()
                direction = r2.xf
                X0 = xk.copy()
                result, newX = chLineSearch(p, X0, direction, N, isBB)
            else:  # case LLSP
                direction_f = -df
                p2 = NSP(LLSsubprobF, [0.8, 0.8],
                         ftol=0,
                         gtol=0,
                         xtol=1e-5,
                         iprint=-1)
                p2.args.f = (xk, direction_f, direction_c, p, 1e20)
                r_subprob = p2.solve('ralg')
                alpha = r_subprob.xf
                newX = xk + alpha[0] * direction_f + alpha[1] * direction_c

                #                dw = (direction_f * direction_c).sum()
                #                cos_phi = dw/p.norm(direction_f)/p.norm(direction_c)
                #                res_0, res_1 = p.getMaxResidual(xk), p.getMaxResidual(xk+1e-1*direction_c)
                #                print cos_phi, res_0-res_1

                #                res_0 = p.getMaxResidual(xk)
                #                optimConstrPoint = getDirectionOptimPoint(p, p.getMaxResidual, xk, direction_c)
                #                res_1 = p.getMaxResidual(optimConstrPoint)
                #
                #                maxConstrLimit = p.contol

                #xk = getDirectionOptimPoint(p, p.f, optimConstrPoint, -optimConstrPoint+xk+direction_f, maxConstrLimit = maxConstrLimit)
                #print 'res_0', res_0, 'res_1', res_1, 'res_2', p.getMaxResidual(xk)
                #xk = getDirectionOptimPoint(p, p.f, xk, direction_f, maxConstrLimit)
                #newX = xk.copy()
                result = 0


#                x_0 = X0.copy()
#                N = j = 0
#                while p.getMaxResidual(x_0) > Residual0 + 0.1*p.contol:
#                    j += 1
#                    x_0 = xk + 0.75**j * (X0-xk)
#                X0 = x_0
#                result, newX = 0, X0
#                print 'newIterResidual = ', p.getMaxResidual(x_0)

            if result != 0:
                p.istop = result
                p.xf = newX
                return

            xk = newX.copy()
            fk = p.f(xk)

            p.xk, p.fk = copy(xk), copy(fk)
            #p._df = p.df(xk)
            ####################
            p.iterfcn()

            if p.istop:
                p.xf = xk
                p.ff = fk
                #p._df = g FIXME: implement me
                return
Ejemplo n.º 4
0
    def __solver__(self, p):
        n = p.n
        x0 = copy(p.x0)
        xPrev = x0.copy()
        xf = x0.copy()
        xk = x0.copy()
        p.xk = x0.copy()

        f0 = p.f(x0)

        fk = f0
        ff = f0
        p.fk = fk

        df0 = p.df(x0)

        #####################################################################


##        #handling box-bounded problems
##        if p.__isNoMoreThanBoxBounded__():
##            for k in range(int(p.maxIter)):
##
##        #end of handling box-bounded problems
        isBB = p.__isNoMoreThanBoxBounded__()
##        isBB = 0
        H = diag(ones(p.n))
        if not p.userProvided.c:
            p.c = lambda x : array([])
            p.dc = lambda x : array([]).reshape(0, p.n)
        if not p.userProvided.h:
            p.h = lambda x : array([])
            p.dh = lambda x : array([]).reshape(0, p.n)

        p.use_subproblem = 'QP'

        #p.use_subproblem = 'LLSP'

        for k in range(p.maxIter+4):
            if isBB:
                f0 = p.f(xk)
                df = p.df(xk)
                direction = -df
                f1 = p.f(xk+direction)
                ind_l = direction<=p.lb-xk
                direction[ind_l] = (p.lb-xk)[ind_l]
                ind_u = direction>=p.ub-xk
                direction[ind_u] = (p.ub-xk)[ind_u]
                ff = p.f(xk + direction)
##                print 'f0', f0, 'f1', f1, 'ff', ff
            else:

                mr = p.getMaxResidual(xk)
                if mr > p.contol: mr_grad = p.getMaxConstrGradient(xk)
                lb = p.lb - xk #- p.contol/2
                ub = p.ub - xk #+ p.contol/2
                c, dc, h, dh, df = p.c(xk), p.dc(xk), p.h(xk), p.dh(xk), p.df(xk)
                A, Aeq = vstack((dc, p.A)), vstack((dh, p.Aeq))
                b = concatenate((-c, p.b-p.matmult(p.A,xk))) #+ p.contol/2
                beq = concatenate((-h, p.beq-p.matmult(p.Aeq,xk)))

                if b.size != 0:
                    isFinite = isfinite(b)
                    ind = where(isFinite)[0]
                    A, b = A[ind], b[ind]
                if beq.size != 0:
                    isFinite = isfinite(beq)
                    ind = where(isFinite)[0]
                    Aeq, beq = Aeq[ind], beq[ind]


                if p.use_subproblem == 'LP': #linear
                    linprob = LP(df, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub=ub)
                    linprob.iprint = -1
                    r2 = linprob.solve('cvxopt_glpk') # TODO: replace lpSolve by autoselect
                    if r2.istop <= 0:
                        p.istop = -12
                        p.msg = "failed to solve LP subproblem"
                        return
                elif p.use_subproblem == 'QP': #quadratic
                    qp = QP(H=H,f=df, A=A, Aeq=Aeq, b=b, beq=beq, lb=lb, ub = ub)
                    qp.iprint = -1
                    r2 = qp.solve('cvxopt_qp') # TODO: replace solver by autoselect
                    #r2 = qp.solve('qld') # TODO: replace solver by autoselect
                    if r2.istop <= 0:
                        for i in range(4):
                            if p.debug: p.warn("iter " + str(k) + ": attempt Num " + str(i) + " to solve QP subproblem has failed")
                            #qp.f += 2*N*sum(qp.A,0)
                            A2 = vstack((A, Aeq, -Aeq))
                            b2 = concatenate((b, beq, -beq)) + pow(10,i)*p.contol
                            qp = QP(H=H,f=df, A=A2, b=b2, iprint = -5)
                            qp.lb = lb - pow(10,i)*p.contol
                            qp.ub = ub + pow(10,i)*p.contol
                            # I guess lb and ub don't matter here
                            try:
                                r2 = qp.solve('cvxopt_qp') # TODO: replace solver by autoselect
                            except:
                                r2.istop = -11
                            if r2.istop > 0: break
                        if r2.istop <= 0:
                            p.istop = -11
                            p.msg = "failed to solve QP subproblem"
                            return
                elif p.use_subproblem == 'LLSP':
                    direction_c = getConstrDirection(p,  xk, regularization = 1e-7)
                else: p.err('incorrect or unknown subproblem')


            if isBB:
                X0 = xk.copy()
                N = 0
                result, newX = chLineSearch(p, X0, direction, N, isBB)
            elif p.use_subproblem != 'LLSP':
                duals = r2.duals
                N = 1.05*abs(duals).sum()
                direction = r2.xf
                X0 = xk.copy()
                result, newX = chLineSearch(p, X0, direction, N, isBB)
            else: # case LLSP
                direction_f = -df
                p2 = NSP(LLSsubprobF, [0.8, 0.8], ftol=0, gtol=0, xtol = 1e-5, iprint = -1)
                p2.args.f =  (xk, direction_f, direction_c, p, 1e20)
                r_subprob = p2.solve('ralg')
                alpha = r_subprob.xf
                newX = xk + alpha[0]*direction_f + alpha[1]*direction_c

#                dw = (direction_f * direction_c).sum()
#                cos_phi = dw/p.norm(direction_f)/p.norm(direction_c)
#                res_0, res_1 = p.getMaxResidual(xk), p.getMaxResidual(xk+1e-1*direction_c)
#                print cos_phi, res_0-res_1

#                res_0 = p.getMaxResidual(xk)
#                optimConstrPoint = getDirectionOptimPoint(p, p.getMaxResidual, xk, direction_c)
#                res_1 = p.getMaxResidual(optimConstrPoint)
#
#                maxConstrLimit = p.contol



                #xk = getDirectionOptimPoint(p, p.f, optimConstrPoint, -optimConstrPoint+xk+direction_f, maxConstrLimit = maxConstrLimit)
                #print 'res_0', res_0, 'res_1', res_1, 'res_2', p.getMaxResidual(xk)
                #xk = getDirectionOptimPoint(p, p.f, xk, direction_f, maxConstrLimit)
                #newX = xk.copy()
                result = 0
#                x_0 = X0.copy()
#                N = j = 0
#                while p.getMaxResidual(x_0) > Residual0 + 0.1*p.contol:
#                    j += 1
#                    x_0 = xk + 0.75**j * (X0-xk)
#                X0 = x_0
#                result, newX = 0, X0
#                print 'newIterResidual = ', p.getMaxResidual(x_0)

            if result != 0:
                p.istop = result
                p.xf = newX
                return

            xk = newX.copy()
            fk = p.f(xk)

            p.xk, p.fk = copy(xk), copy(fk)
            #p._df = p.df(xk)
            ####################
            p.iterfcn()

            if p.istop:
                p.xf = xk
                p.ff = fk
                #p._df = g FIXME: implement me
                return
Ejemplo n.º 5
0
Aeq = [[1.]*len(Ulist)]
beq = (1.,)
A  = []
b = []
player = 0
while player<len(no_action):
    action = 0
    while action < no_action[player]:
        for k in range(0,no_action[player]):
            A.append(multiply(udiff(player,action,k),aik_indicator(player,action)))
            b.append(0.)
        action = action + 1
    player = player +1
#print A,b
p = LP(neg_welfare, A=A,b=b,lb=lb,ub=ub,Aeq=Aeq,beq=beq)#we use the artificial minimization problem under the constraint that action gives a weakly higher payoff than any other action; if no feasible solution is obtained than action is dominated
p.iprint = -1
try:
    r = p.minimize('pclp')
    pminw = LP(welfare, A=A,b=b,lb=lb,ub=ub,Aeq=Aeq,beq=beq)
    pminw.iprint = -1
    rminw = pminw.minimize('pclp')

except:
    print "Solver returns error. Probably, each player has a unique rationalizable action (check with rationalizability solver)."
    quit()
    
###formatting the result back into the same format as the game input
# first: rounding
outr = []
for item in r.xf:
    outr.append(round(item,3))
 def solve(self):
     p=LP(self.cost_function,Aeq=self.Aeq,beq=self.beq,lb=self.lb)
     p.iprint = -1
     r=p.solve('pclp')
     return [r.xf,r.ff]