Ejemplo n.º 1
0
    def setup(self):
        distance_pairs = list(itertools.product(range(4), range(4, 6)))
        dist = {
            pair: paths.MDTrajFunctionCV(name="dist" + str(pair),
                                         f=md.compute_distances,
                                         topology=topology,
                                         atom_pairs=[list(pair)])
            for pair in distance_pairs
        }
        min_dist = paths.MDTrajFunctionCV(
            name="min_dist",
            topology=topology,
            f=lambda traj, pairs: \
                md.compute_distances(traj, atom_pairs=pairs).min(axis=1),
            pairs=list(dist.keys()),
            cv_scalarize_numpy_singletons=False
        )
        self.bound_state = paths.CVDefinedVolume(dist[(0, 4)], 0.0, 0.06) \
                and paths.CVDefinedVolume(dist[(1, 5)], 0.0, 0.06)
        self.unbound_state = paths.CVDefinedVolume(min_dist, 0.2, float("inf"))
        self.excluded_volume = (
            paths.CVDefinedVolume(dist[(0, 4)], 0.0, 0.075)
            and paths.CVDefinedVolume(dist[(0, 5)], 0.0, 0.075)
            and paths.CVDefinedVolume(dist[(1, 4)], 0.0, 0.075)
            and paths.CVDefinedVolume(dist[(1, 5)], 0.0, 0.075))

        self.ensemble = MultipleBindingEnsemble(
            initial_state=self.bound_state,
            known_states=[self.bound_state, self.unbound_state],
            stable_contact_state=stable_contact_state,
            excluded_volume=self.excluded_volume)
 def _wc_hg_TPS_network(self, topology):
     # separated for readability, not re-usability
     d_WC = paths.MDTrajFunctionCV("d_WC", md.compute_distances,
                                   topology, atom_pairs=[[275, 494]])
     d_HG = paths.MDTrajFunctionCV("d_HG", md.compute_distances,
                                   topology, atom_pairs=[[275, 488]])
     d_bp = paths.MDTrajFunctionCV("d_bp", md.compute_distances,
                                   topology, atom_pairs=[[274, 491]])
     state_WC = (paths.CVDefinedVolume(d_WC, 0.0, 0.35) &
                 paths.CVDefinedVolume(d_bp, 0.0, 0.35)).named("WC")
     state_HG = (paths.CVDefinedVolume(d_HG, 0.0, 0.35) &
                 paths.CVDefinedVolume(d_bp, 0.0, 0.35)).named("HG")
     network = paths.TPSNetwork(state_WC, state_HG)
     return network
    def test_torsion_vs_mdtraj(self):
        plmd = PLUMEDInterface(self.topology)
        tor_md = paths.MDTrajFunctionCV("tor_md",
                                        md.compute_dihedrals,
                                        self.topology,
                                        indices=[[6, 8, 14, 16]])
        tor_pl = PLUMEDCV("tor_pl", plmd, "TORSION ATOMS=7,9,15,17")

        np.testing.assert_almost_equal(tor_md(self.trajectory),
                                       tor_pl(self.trajectory),
                                       decimal=3)
    def test_angle_vs_mdtraj(self):
        plmd = PLUMEDInterface(self.topology)
        ang_md = paths.MDTrajFunctionCV("ang_md",
                                        md.compute_angles,
                                        self.topology,
                                        angle_indices=[[4, 6, 8]])
        ang_pl = PLUMEDCV("ang_pl", plmd, "ANGLE ATOMS=5,7,9")

        np.testing.assert_almost_equal(ang_md(self.trajectory),
                                       ang_pl(self.trajectory),
                                       decimal=3)
    def test_distance_vs_mdtraj(self):
        plmd = PLUMEDInterface(self.topology)
        dist_md = paths.MDTrajFunctionCV("dist_md",
                                         md.compute_distances,
                                         self.topology,
                                         atom_pairs=[[6, 8]])
        dist_pl = PLUMEDCV("dist_pl", plmd, "DISTANCE ATOMS=7,9")

        np.testing.assert_almost_equal(dist_md(self.trajectory),
                                       dist_pl(self.trajectory),
                                       decimal=3)
    def test_molinfo(self):
        plmd = PLUMEDInterface(self.topology,
                               molinfo=data_filename("plumed_wrapper/" +
                                                     "AD_initial_frame.pdb"))
        tor_md = paths.MDTrajFunctionCV("tor_md",
                                        md.compute_dihedrals,
                                        self.topology,
                                        indices=[[6, 8, 14, 16]])
        tor_pl = PLUMEDCV("tor_pl", plmd, "TORSION ATOMS=@psi-2")

        np.testing.assert_almost_equal(tor_md(self.trajectory),
                                       tor_pl(self.trajectory),
                                       decimal=3)
    def test_rmsd_vs_mdtraj(self):
        plmd = PLUMEDInterface(self.topology)
        rmsd_ref_file = data_filename(
            os.path.join("plumed_wrapper", "AD_plumed_rmsd.pdb"))
        md_ref = md.load(rmsd_ref_file)
        rmsd_md = paths.MDTrajFunctionCV("rmsd_md",
                                         md.rmsd,
                                         self.topology,
                                         reference=md_ref,
                                         frame=0,
                                         atom_indices=range(22))
        rmsd_pl = PLUMEDCV("rmsd_pl", plmd,
                           "RMSD REFERENCE=" + rmsd_ref_file + " TYPE=OPTIMAL")

        np.testing.assert_almost_equal(rmsd_md(self.trajectory),
                                       rmsd_pl(self.trajectory),
                                       decimal=3)
Ejemplo n.º 8
0
initial_snapshot = engine.current_snapshot

engine_hot.current_snapshot = template
engine_hot.minimize()
initial_snapshot_hot = engine_hot.current_snapshot

storage.tag['cool_template'] = engine.current_snapshot
storage.tag['hot_template'] = engine_hot.current_snapshot

# Define order parameters
# Compute the closest heavy atom distances between receptor and ligand
cv_old = paths.MDTrajFunctionCV(
    name="distance",
    cv_scalarize_numpy_singletons=
    False,  # needed because compute_contacts() does not return a single numpy array
    contacts=[[0, 1]],
    f=md.compute_contacts,
    topology=template.topology,
    scheme='closest-heavy',
    ignore_nonprotein=False,
    periodic=False).with_diskcache()


def distance(snapshot, receptor_atoms, ligand_atoms):
    import numpy as np
    receptor_com = snapshot.xyz[receptor_atoms, :].mean(0)
    ligand_com = snapshot.xyz[ligand_atoms, :].mean(0)
    return np.sqrt(((receptor_com - ligand_com)**2).sum())


cv = paths.CoordinateFunctionCV(name="distance",
                                f=distance,
# In[5]:


hi_T_engine.current_snapshot = template
hi_T_engine.minimize()


# ## Defining states
# 
# First we define the CVs using the `md.compute_dihedrals` function. Then we define our states using `PeriodicCVDefinedVolume` (since our CVs are periodic.)

# In[6]:


# define the CVs
psi = paths.MDTrajFunctionCV("psi", md.compute_dihedrals, template.topology, indices=[[6,8,14,16]])
phi = paths.MDTrajFunctionCV("phi", md.compute_dihedrals, template.topology, indices=[[4,6,8,14]])


# In[7]:


# define the states
deg = 180.0/np.pi
C_7eq = (
    paths.PeriodicCVDefinedVolume(phi, lambda_min=-180/deg, lambda_max=0/deg, 
                                  period_min=-np.pi, period_max=np.pi) &
    paths.PeriodicCVDefinedVolume(psi, lambda_min=100/deg, lambda_max=200/deg,
                                  period_min=-np.pi, period_max=np.pi)
).named("C_7eq")
# similarly, without bothering with the labels: