Ejemplo n.º 1
0
def test_multi_pass_circ():
    """ test fot the multipass """
    settings.windowsizes = (64, 64, 16)
    settings.overlap = (32, 32, 8)
    settings.num_iterations = 2
    settings.interpolation_order = 3
    settings.validation_first_pass = True
    settings.sig2noise_validate = False
    # ettings.show_all_plots = True

    x, y, u, v, s2n = windef.first_pass(
        frame_a,
        frame_b,
        settings,
    )
    print("first pass\n")
    print("\n", x, y, u, v, s2n)
    assert np.allclose(u, shift_u, atol = threshold)
    assert np.allclose(v, shift_v, atol = threshold)

    if settings.image_mask:
        image_mask = np.logical_and(mask_a, mask_b)
        mask_coords = preprocess.mask_coordinates(image_mask)
        # mark those points on the grid of PIV inside the mask
        grid_mask = preprocess.prepare_mask_on_grid(x,y,mask_coords)

        # mask the velocity
        u = np.ma.masked_array(u, mask=grid_mask)
        v = np.ma.masked_array(v, mask=grid_mask)
    else:
        mask_coords = []
        u = np.ma.masked_array(u, mask=np.ma.nomask)
        v = np.ma.masked_array(v, mask=np.ma.nomask)

    for i in range(1,settings.num_iterations):
        x, y, u, v, s2n, _ = windef.multipass_img_deform(
            frame_a,
            frame_b,
            i,
            x,
            y,
            u,
            v,
            settings
        )

    print(f"Pass {i}\n")
    print(x)
    print(y)
    print(u) 
    print(v)
    print(s2n)
    assert np.mean(np.abs(u - shift_u)) < threshold
    assert np.mean(np.abs(v - shift_v)) < threshold
Ejemplo n.º 2
0
def test_multi_pass_circ():
    """ test fot the multipass """
    window_size = (128, 64, 32)
    overlap = (64, 32, 16)
    iterations = 3
    frame_a = np.zeros((1024, 1024))
    frame_a = random_noise(frame_a)
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        frame_a = img_as_ubyte(frame_a)
    frame_b = np.roll(np.roll(frame_a, 3, axis=1), 2, axis=0)
    x, y, u, v, sig2noise_ratio = windef.first_pass(
        frame_a,
        frame_b,
        window_size[0],
        overlap[0],
        iterations,
        correlation_method='circular',
        subpixel_method='gaussian',
        do_sig2noise=True,
        sig2noise_method='peak2peak',
        sig2noise_mask=2)
    u_old = u
    v_old = v
    i = 1
    for i in range(2, iterations + 1):
        x, y, u, v, sig2noise_ratio, mask = windef.multipass_img_deform(
            frame_a,
            frame_b,
            window_size[i - 1],
            overlap[i - 1],
            iterations,
            i,
            x,
            y,
            u,
            v,
            correlation_method='circular',
            subpixel_method='gaussian',
            do_sig2noise=False,
            sig2noise_method='peak2peak',
            sig2noise_mask=2,
            MinMaxU=(-100, 50),
            MinMaxV=(-50, 50),
            std_threshold=1000000,
            median_threshold=200000,
            median_size=1,
            filter_method='localmean',
            max_filter_iteration=10,
            filter_kernel_size=2,
            interpolation_order=3)
    assert (np.max(np.abs(u - 3)) < 0.1 and np.any(u != u_old))
    assert (np.max(np.abs(v - 2)) < 0.1 and np.any(v != v_old))
Ejemplo n.º 3
0
def test_multi_pass_lin():
    """ test fot the multipass """
    window_size = (128, 64, 32)
    overlap = (64, 32, 16)
    iterations = 3

    x, y, u, v, s2n = windef.first_pass(frame_a,
                                        frame_b,
                                        window_size[0],
                                        overlap[0],
                                        iterations,
                                        correlation_method='linear',
                                        subpixel_method='gaussian',
                                        do_sig2noise=True,
                                        sig2noise_method='peak2peak',
                                        sig2noise_mask=2)
    u_old = u.copy()
    v_old = v.copy()
    i = 1
    for i in range(2, iterations + 1):
        x, y,\
        u, v,\
        sn, m = windef.multipass_img_deform(frame_a, frame_b,
                                            window_size[i-1],
                                            overlap[i-1],
                                            iterations, i, x, y,
                                            u, v,
                                            correlation_method='linear',
                                            subpixel_method='gaussian',
                                            do_sig2noise=False,
                                            sig2noise_method='peak2peak',
                                            sig2noise_mask=2,
                                            MinMaxU=(-100, 50),
                                            MinMaxV=(-50, 50),
                                            std_threshold=1000000,
                                            median_threshold=200000,
                                            median_size=1,
                                            filter_method='localmean',
                                            max_filter_iteration=10,
                                            filter_kernel_size=2,
                                            interpolation_order=3)
    assert (np.max(np.abs(u - 3)) < 0.1 and np.any(u != u_old))
    assert (np.max(np.abs(v + 2)) < 0.1 and np.any(v != v_old))
Ejemplo n.º 4
0
def test_multi_pass_lin():
    """ test fot the multipass """
    settings.windowsizes = (64, 32, 16)
    settings.overlap = (32, 16, 8)
    settings.num_iterations = 1
    settings.sig2noise_validate = True
    settings.correlation_method = 'linear'
    settings.normalized_correlation = True
    settings.sig2noise_threshold = 1.0 # note the value for linear/normalized

    x, y, u, v, s2n = windef.first_pass(
        frame_a,
        frame_b,
        settings,
    )

    print("\n", x, y, u, v, s2n)
    assert np.mean(np.abs(u - shift_u)) < threshold
    assert np.mean(np.abs(v - shift_v)) < threshold


    mask_coords = []
    u = np.ma.masked_array(u, mask=np.ma.nomask)
    v = np.ma.masked_array(v, mask=np.ma.nomask)

    for i in range(1, settings.num_iterations):
        x, y, u, v, s2n, _ = windef.multipass_img_deform(
            frame_a,
            frame_b,
            i,
            x,
            y,
            u,
            v,
            settings,
        )
        print(f"Iteration {i}")
        print("\n", x, y, u, v, s2n)
        assert np.allclose(u, shift_u, atol=threshold)
        assert np.allclose(v, shift_v, atol=threshold)
Ejemplo n.º 5
0
    def func(args):
        """A function to process each image pair."""

        # this line is REQUIRED for multiprocessing to work
        # always use it in your custom function

        file_a, file_b, counter = args

        ' read images into numpy arrays'
        frame_a = tools.imread(os.path.join(settings.filepath_images, file_a))
        frame_b = tools.imread(os.path.join(settings.filepath_images, file_b))

        ' crop to ROI'
        if settings.ROI=='full':
            frame_a=frame_a
            frame_b=frame_b
        else:     
            frame_a =  frame_a[settings.ROI[0]:settings.ROI[1],settings.ROI[2]:settings.ROI[3]]
            frame_b =  frame_b[settings.ROI[0]:settings.ROI[1],settings.ROI[2]:settings.ROI[3]]
        
        if settings.dynamic_masking_method=='edge' or 'intensity':    
            frame_a = preprocess.dynamic_masking(frame_a,method=settings.dynamic_masking_method,filter_size=settings.dynamic_masking_filter_size,threshold=settings.dynamic_masking_threshold)
            frame_b = preprocess.dynamic_masking(frame_b,method=settings.dynamic_masking_method,filter_size=settings.dynamic_masking_filter_size,threshold=settings.dynamic_masking_threshold)

        '''%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'''
        'first pass'
        x, y, u, v, sig2noise_ratio = windef.first_pass(frame_a,frame_b,settings.windowsizes[0], settings.overlap[0],settings.iterations,
                                      correlation_method=settings.correlation_method, subpixel_method=settings.subpixel_method, do_sig2noise=settings.extract_sig2noise,
                                      sig2noise_method=settings.sig2noise_method, sig2noise_mask=settings.sig2noise_mask,)
    
        'validation using gloabl limits and std and local median'
        '''MinMaxU : two elements tuple
            sets the limits of the u displacment component
            Used for validation.

        MinMaxV : two elements tuple
            sets the limits of the v displacment component
            Used for validation.

        std_threshold : float
            sets the  threshold for the std validation

        median_threshold : float
            sets the threshold for the median validation

        filter_method : string
            the method used to replace the non-valid vectors
            Methods:
                'localmean',
                'disk',
                'distance', 

        max_filter_iteration : int
            maximum of filter iterations to replace nans

        filter_kernel_size : int
            size of the kernel used for the filtering'''

        mask=np.full_like(x,False)
        if settings.validation_first_pass==True:    
            u, v, mask_g = validation.global_val( u, v, settings.MinMax_U_disp, settings.MinMax_V_disp)
            u,v, mask_s = validation.global_std( u, v, std_threshold = settings.std_threshold )
            u, v, mask_m = validation.local_median_val( u, v, u_threshold=settings.median_threshold, v_threshold=settings.median_threshold, size=settings.median_size )
            if settings.extract_sig2noise==True and settings.iterations==1 and settings.do_sig2noise_validation==True:
                u,v, mask_s2n = validation.sig2noise_val( u, v, sig2noise_ratio, threshold = settings.sig2noise_threshold)
                mask=mask+mask_g+mask_m+mask_s+mask_s2n
            else:
                mask=mask+mask_g+mask_m+mask_s
        'filter to replace the values that where marked by the validation'
        if settings.iterations>1:
             u, v = filters.replace_outliers( u, v, method=settings.filter_method, max_iter=settings.max_filter_iteration, kernel_size=settings.filter_kernel_size)
             'adding masks to add the effect of all the validations'
             if settings.smoothn==True:
                  #print('Hello I am running')
                  u,dummy_u1,dummy_u2,dummy_u3=smoothn(u,s=settings.smoothn_p)
                  v,dummy_v1,dummy_v2,dummy_v3=smoothn(v,s=settings.smoothn_p)        
        elif settings.iterations==1 and settings.replace_vectors==True:    
             u, v = filters.replace_outliers( u, v, method=settings.filter_method, max_iter=settings.max_filter_iteration, kernel_size=settings.filter_kernel_size)
             'adding masks to add the effect of all the validations'
             if settings.smoothn==True:
                  #print('Hello I am running')
                  u, v = filters.replace_outliers( u, v, method=settings.filter_method, max_iter=settings.max_filter_iteration, kernel_size=settings.filter_kernel_size)
                  u,dummy_u1,dummy_u2,dummy_u3=smoothn(u,s=settings.smoothn_p)
                  v,dummy_v1,dummy_v2,dummy_v3=smoothn(v,s=settings.smoothn_p)        
     




        i = 1
        'all the following passes'
        for i in range(2, settings.iterations+1):
            x, y, u, v, sig2noise_ratio, mask = windef.multipass_img_deform(frame_a, frame_b, settings.windowsizes[i-1], settings.overlap[i-1],settings.iterations,i,
                                                    x, y, u, v, correlation_method=settings.correlation_method,
                                                    subpixel_method=settings.subpixel_method, do_sig2noise=settings.extract_sig2noise,
                                                    sig2noise_method=settings.sig2noise_method, sig2noise_mask=settings.sig2noise_mask,
                                                    MinMaxU=settings.MinMax_U_disp,
                                                    MinMaxV=settings.MinMax_V_disp,std_threshold=settings.std_threshold,
                                                    median_threshold=settings.median_threshold,median_size=settings.median_size,filter_method=settings.filter_method,
                                                    max_filter_iteration=settings.max_filter_iteration, filter_kernel_size=settings.filter_kernel_size,
                                                    interpolation_order=settings.interpolation_order)
            # If the smoothing is active, we do it at each pass
            if settings.smoothn==True:
                #print('Hello I am running')
                 u,dummy_u1,dummy_u2,dummy_u3=smoothn(u,s=settings.smoothn_p)
                 v,dummy_v1,dummy_v2,dummy_v3=smoothn(v,s=settings.smoothn_p)        
     
        
#             if settings.smoothn==True 
#                u,dummy_u1,dummy_u2,dummy_u3=smoothn(u,s=settings.smoothn_p)
#                v,dummy_v1,dummy_v2,dummy_v3=smoothn(v,s=settings.smoothn_p)   
        
        '''%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'''
        if settings.extract_sig2noise==True and i==settings.iterations and settings.iterations!=1 and settings.do_sig2noise_validation==True:
            u,v, mask_s2n = validation.sig2noise_val( u, v, sig2noise_ratio, threshold = settings.sig2noise_threshold)
            mask=mask+mask_s2n
        if settings.replace_vectors==True:
            u, v = filters.replace_outliers( u, v, method=settings.filter_method, max_iter=settings.max_filter_iteration, kernel_size=settings.filter_kernel_size)
        'pixel/frame->pixel/sec'
        u=u/settings.dt
        v=v/settings.dt
        'scales the results pixel-> meter'
        x, y, u, v = scaling.uniform(x, y, u, v, scaling_factor = settings.scaling_factor )     
        'save to a file'
        tools_patch.save_windef(x, y, u, v,sig2noise_ratio, mask ,os.path.join(save_path,'field_A%03d.txt' % counter), delimiter='\t')
        'some messages to check if it is still alive'
        

        'some other stuff that one might want to use'
        
        if settings.show_plot==True or settings.save_plot==True:
            plt.close('all')
            fig, ax = tools_patch.display_vector_field_windef(os.path.join(save_path, 'field_A%03d.txt' % counter), scaling_factor=settings.scale_plot)
            Name = os.path.join(save_path, 'Image_A%03d.png' % (counter-1))
            #Name = os.path.join(save_path, settings.field_name)
            if settings.save_plot==True:
                fig.savefig(Name, dpi=100)
            if settings.show_plot==True:
                plt.show()
            
        print('Image Pair ' + str(counter))
# In[38]:


for i in range(1, settings.iterations): ## all other passes
    x, y, u, v, sig2noise_ratio = windef.multipass_img_deform(
        frame_a,
        frame_b,
        settings.windowsizes[i],
        settings.overlap[i],
        settings.iterations,
        i,
        x,
        y,
        u,
        v,
        correlation_method=settings.correlation_method,
        subpixel_method=settings.subpixel_method,
        deformation_method=settings.deformation_method,
        do_sig2noise=settings.extract_sig2noise,
        sig2noise_method=settings.sig2noise_method,
        sig2noise_mask=settings.sig2noise_mask,
        interpolation_order=settings.interpolation_order,
        normalized_correlation=settings.normalized_correlation,
        mask_coords=mask_coords,
    )
    
    mask = u.mask
    
    # Now we can first validate, filter out, interpolate
    # and then smooth the data for this pass:
Ejemplo n.º 7
0
    def process(self, args):
        """
            Process chain as configured in the GUI.

            Parameters
            ----------
            args : tuple
                Tuple as expected by the inherited run method:
                file_a (str) -- image file a
                file_b (str) -- image file b
                counter (int) -- index pointing to an element of the filename
                                 list
        """
        file_a, file_b, counter = args
        frame_a = piv_tls.imread(file_a)
        frame_b = piv_tls.imread(file_b)

        # Smoothning script borrowed from openpiv.windef
        s = self.p['smoothn_val']

        def smoothn(u, s):
            s = s
            u, _, _, _ = piv_smt.smoothn(u, s=s, isrobust=self.p['robust'])
            return (u)

        # delimiters placed here for safety
        delimiter = self.p['separator']
        if delimiter == 'tab':
            delimiter = '\t'
        if delimiter == 'space':
            delimiter = ' '

        # preprocessing
        print('\nPre-pocessing image pair: {}'.format(counter + 1))
        if self.p['background_subtract'] \
                and self.p['background_type'] == 'minA - minB':
            self.background = gen_background(self.p, frame_a, frame_b)

        frame_a = frame_a.astype(np.int32)
        frame_a = process_images(self,
                                 frame_a,
                                 self.GUI.preprocessing_methods,
                                 background=self.background)
        frame_b = frame_b.astype(np.int32)
        frame_b = process_images(self,
                                 frame_b,
                                 self.GUI.preprocessing_methods,
                                 background=self.background)

        print('Evaluating image pair: {}'.format(counter + 1))

        # evaluation first pass
        start = time.time()
        passes = 1
        # setup custom windowing if selected
        if self.parameter['custom_windowing']:
            corr_window_0 = self.parameter['corr_window_1']
            overlap_0 = self.parameter['overlap_1']
            for i in range(2, 8):
                if self.parameter['pass_%1d' % i]:
                    passes += 1
                else:
                    break

        else:
            passes = self.parameter['coarse_factor']
            if self.parameter['grid_refinement'] == 'all passes' \
                    and self.parameter['coarse_factor'] != 1:
                corr_window_0 = self.parameter['corr_window'] * \
                    2**(self.parameter['coarse_factor'] - 1)
                overlap_0 = self.parameter['overlap'] * \
                    2**(self.parameter['coarse_factor'] - 1)

            # Refine all passes after first when there are more than 1 pass.
            elif self.parameter['grid_refinement'] == '2nd pass on' \
                    and self.parameter['coarse_factor'] != 1:
                corr_window_0 = self.parameter['corr_window'] * \
                    2**(self.parameter['coarse_factor'] - 2)
                overlap_0 = self.parameter['overlap'] * \
                    2**(self.parameter['coarse_factor'] - 2)

            # If >>none<< is selected or something goes wrong, the window
            # size would remain the same.
            else:
                corr_window_0 = self.parameter['corr_window']
                overlap_0 = self.parameter['overlap']
        overlap_percent = overlap_0 / corr_window_0
        sizeX = corr_window_0

        u, v, sig2noise = piv_wdf.extended_search_area_piv(
            frame_a.astype(np.int32),
            frame_b.astype(np.int32),
            window_size=corr_window_0,
            overlap=overlap_0,
            search_area_size=corr_window_0,
            width=self.parameter['s2n_mask'],
            subpixel_method=self.parameter['subpixel_method'],
            sig2noise_method=self.parameter['sig2noise_method'],
            correlation_method=self.parameter['corr_method'],
            normalized_correlation=self.parameter['normalize_correlation'])

        x, y = piv_prc.get_coordinates(frame_a.shape, corr_window_0, overlap_0)

        # validating first pass
        mask = np.full_like(x, 0)
        if self.parameter['fp_vld_global_threshold']:
            u, v, Mask = piv_vld.global_val(
                u,
                v,
                u_thresholds=(self.parameter['fp_MinU'],
                              self.parameter['fp_MaxU']),
                v_thresholds=(self.parameter['fp_MinV'],
                              self.parameter['fp_MaxV']))
            # consolidate effects of mask
            mask += Mask

        if self.parameter['fp_local_med']:
            u, v, Mask = piv_vld.local_median_val(
                u,
                v,
                u_threshold=self.parameter['fp_local_med'],
                v_threshold=self.parameter['fp_local_med'],
                size=self.parameter['fp_local_med_size'])
            mask += Mask

        if self.parameter['adv_repl']:
            u, v = piv_flt.replace_outliers(
                u,
                v,
                method=self.parameter['adv_repl_method'],
                max_iter=self.parameter['adv_repl_iter'],
                kernel_size=self.parameter['adv_repl_kernel'])
        print('Validated first pass result of image pair: {}.'.format(counter +
                                                                      1))

        # smoothning  before deformation if 'each pass' is selected
        if self.parameter['smoothn_each_pass']:
            if self.parameter['smoothn_first_more']:
                s *= 2
            u = smoothn(u, s)
            v = smoothn(v, s)
            print('Smoothned pass 1 for image pair: {}.'.format(counter + 1))
            s = self.parameter['smoothn_val1']

        print('Finished pass 1 for image pair: {}.'.format(counter + 1))
        print("window size: " + str(corr_window_0))
        print('overlap: ' + str(overlap_0), '\n')

        # evaluation of all other passes
        if passes != 1:
            iterations = passes - 1
            for i in range(2, passes + 1):
                # setting up the windowing of each pass
                if self.parameter['custom_windowing']:
                    corr_window = self.parameter['corr_window_%1d' % i]
                    overlap = int(corr_window * overlap_percent)

                else:
                    if self.parameter['grid_refinement'] == 'all passes' or \
                            self.parameter['grid_refinement'] == '2nd pass on':
                        corr_window = self.parameter['corr_window'] * \
                            2**(iterations - 1)
                        overlap = self.parameter['overlap'] * \
                            2**(iterations - 1)

                    else:
                        corr_window = self.parameter['corr_window']
                        overlap = self.parameter['overlap']
                sizeX = corr_window

                # translate settings to windef settings object
                piv_wdf_settings = piv_wdf.Settings()
                piv_wdf_settings.correlation_method = \
                    self.parameter['corr_method']
                piv_wdf_settings.normalized_correlation = \
                    self.parameter['normalize_correlation']
                piv_wdf_settings.windowsizes = (corr_window, ) * (passes + 1)
                piv_wdf_settings.overlap = (overlap, ) * (passes + 1)
                piv_wdf_settings.num_iterations = passes
                piv_wdf_settings.subpixel_method = \
                    self.parameter['subpixel_method']
                piv_wdf_settings.deformation_method = \
                    self.parameter['deformation_method']
                piv_wdf_settings.interpolation_order = \
                    self.parameter['interpolation_order']
                piv_wdf_settings.sig2noise_validate = True,
                piv_wdf_settings.sig2noise_method = \
                    self.parameter['sig2noise_method']
                piv_wdf_settings.sig2noise_mask = self.parameter['s2n_mask']

                # do the correlation
                x, y, u, v, sig2noise, mask = piv_wdf.multipass_img_deform(
                    frame_a.astype(np.int32),
                    frame_b.astype(np.int32),
                    i,  # current iteration
                    x,
                    y,
                    u,
                    v,
                    piv_wdf_settings)

                # validate other passes
                if self.parameter['sp_vld_global_threshold']:
                    u, v, Mask = piv_vld.global_val(
                        u,
                        v,
                        u_thresholds=(self.parameter['sp_MinU'],
                                      self.parameter['sp_MaxU']),
                        v_thresholds=(self.parameter['sp_MinV'],
                                      self.parameter['sp_MaxV']))
                    mask += Mask  # consolidate effects of mask

                if self.parameter['sp_vld_global_threshold']:
                    u, v, Mask = piv_vld.global_std(
                        u, v, std_threshold=self.parameter['sp_std_threshold'])
                    mask += Mask

                if self.parameter['sp_local_med_validation']:
                    u, v, Mask = piv_vld.local_median_val(
                        u,
                        v,
                        u_threshold=self.parameter['sp_local_med'],
                        v_threshold=self.parameter['sp_local_med'],
                        size=self.parameter['sp_local_med_size'])
                    mask += Mask

                if self.parameter['adv_repl']:
                    u, v = piv_flt.replace_outliers(
                        u,
                        v,
                        method=self.parameter['adv_repl_method'],
                        max_iter=self.parameter['adv_repl_iter'],
                        kernel_size=self.parameter['adv_repl_kernel'])
                print('Validated pass {} of image pair: {}.'.format(
                    i, counter + 1))

                # smoothning each individual pass if 'each pass' is selected
                if self.parameter['smoothn_each_pass']:
                    u = smoothn(u, s)
                    v = smoothn(v, s)
                    print('Smoothned pass {} for image pair: {}.'.format(
                        i, counter + 1))

                print('Finished pass {} for image pair: {}.'.format(
                    i, counter + 1))
                print("window size: " + str(corr_window))
                print('overlap: ' + str(overlap), '\n')
                iterations -= 1

        if self.p['flip_u']:
            u = np.flipud(u)

        if self.p['flip_v']:
            v = np.flipud(v)

        if self.p['invert_u']:
            u *= -1

        if self.p['invert_v']:
            v *= -1

        # scaling
        u = u / self.parameter['dt']
        v = v / self.parameter['dt']
        x, y, u, v = piv_scl.uniform(x,
                                     y,
                                     u,
                                     v,
                                     scaling_factor=self.parameter['scale'])
        end = time.time()

        # save data to file.
        out = np.vstack([m.ravel() for m in [x, y, u, v, mask, sig2noise]])
        np.savetxt(self.save_fnames[counter],
                   out.T,
                   fmt='%8.4f',
                   delimiter=delimiter)
        print('Processed image pair: {}'.format(counter + 1))

        sizeY = sizeX
        sizeX = ((int(frame_a.shape[0] - sizeX) //
                  (sizeX - (sizeX * overlap_percent))) + 1)
        sizeY = ((int(frame_a.shape[1] - sizeY) //
                  (sizeY - (sizeY * overlap_percent))) + 1)

        time_per_vec = _round((((end - start) * 1000) / ((sizeX * sizeY) - 1)),
                              3)

        print('Process time: {} second(s)'.format((_round((end - start), 3))))
        print('Number of vectors: {}'.format(int((sizeX * sizeY) - 1)))
        print('Time per vector: {} millisecond(s)'.format(time_per_vec))