Ejemplo n.º 1
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    # update configs according to CLI args
    if args.work_dir is not None:
        cfg.work_dir = args.work_dir

    cfg.model.pretrained = None  # ensure to use checkpoint rather than pretraining

    # check memcached package exists
    if importlib.util.find_spec('mc') is None:
        traverse_replace(cfg, 'memcached', False)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        if args.launcher == 'slurm':
            cfg.dist_params['port'] = args.port
        init_dist(args.launcher, **cfg.dist_params)

    # logger
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, 'test_{}.log'.format(timestamp))
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # build the dataloader
    dataset = build_dataset(cfg.data.val)
    data_loader = build_dataloader(
        dataset,
        imgs_per_gpu=cfg.data.imgs_per_gpu,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=distributed,
        shuffle=False)

    # build the model and load checkpoint
    model = build_model(cfg.model)
    load_checkpoint(model, args.checkpoint, map_location='cpu')

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader)  # dict{key: np.ndarray}

    rank, _ = get_dist_info()
    if rank == 0:
        for name, val in outputs.items():
            dataset.evaluate(
                torch.from_numpy(val), name, logger, topk=(1, 5))
Ejemplo n.º 2
0
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    # update configs according to CLI args
    if args.work_dir is not None:
        cfg.work_dir = args.work_dir
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    cfg.gpus = args.gpus

    # my
    if args.imgs_per_gpu is not None:
        cfg.data.imgs_per_gpu = args.imgs_per_gpu
    if args.val_imgs_per_gpu is not None:
        cfg.custom_hooks[0].imgs_per_gpu = args.val_imgs_per_gpu
    #

    # check memcached package exists
    if importlib.util.find_spec('mc') is None:
        traverse_replace(cfg, 'memcached', False)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
        assert cfg.model.type not in \
            ['DeepCluster', 'MOCO', 'SimCLR', 'ODC', 'NPID'], \
            "{} does not support non-dist training.".format(cfg.model.type)
    else:
        distributed = True
        if args.launcher == 'slurm':
            cfg.dist_params['port'] = args.port
        init_dist(args.launcher, **cfg.dist_params)

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, 'train_{}.log'.format(timestamp))
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([('{}: {}'.format(k, v))
                          for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info('Distributed training: {}'.format(distributed))
    logger.info('Config:\n{}'.format(cfg.text))

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}, deterministic: {}'.format(
            args.seed, args.deterministic))
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed

    if args.pretrained is not None:
        assert isinstance(args.pretrained, str)
        cfg.model.pretrained = args.pretrained
    model = build_model(cfg.model)

    datasets = [build_dataset(cfg.data.train)]
    assert len(cfg.workflow) == 1, "Validation is called by hook."
    if cfg.checkpoint_config is not None:
        # save openselfsup version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(openselfsup_version=__version__,
                                          config=cfg.text)
    # add an attribute for visualization convenience
    train_model(model,
                datasets,
                cfg,
                distributed=distributed,
                timestamp=timestamp,
                meta=meta)
Ejemplo n.º 3
0
def main():
    print(f"Using num gpus: {torch.cuda.device_count()}")
    args = parse_args()

    cfg = Config.fromfile(args.config)

    if args.local_rank == 0:
        wandb.init(config=cfg.model)
        wandb.config.update(cfg.data)
        wandb.config.update(
            {"pipelines": ','.join([p.type for p in cfg.data.train.pipeline])})
        wandb.config.update({"epochs": cfg.total_epochs})
        wandb.config.update({"dataset_size": cfg.dataset_size})

    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    # update configs according to CLI args
    if wandb.run is not None:
        # save to wandb run dir for tracking and saving the models
        cfg.work_dir = wandb.run.dir
    elif args.work_dir is not None:
        cfg.work_dir = args.work_dir
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    cfg.gpus = args.gpus
    # check memcached package exists
    if importlib.util.find_spec('mc') is None:
        traverse_replace(cfg, 'memcached', False)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
        if not args.debug:
            assert cfg.model.type not in \
                ['DeepCluster', 'MOCO', 'SimCLR', 'ODC', 'NPID'], \
                "{} does not support non-dist training unless debugging (use --debug flag).".format(
                    cfg.model.type)
    else:
        distributed = True
        if args.launcher == 'slurm':
            cfg.dist_params['port'] = args.port
        init_dist(args.launcher, **cfg.dist_params)

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, 'train_{}.log'.format(timestamp))
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([('{}: {}'.format(k, v))
                          for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info('Distributed training: {}'.format(distributed))
    logger.info('Config:\n{}'.format(cfg.text))

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}, deterministic: {}'.format(
            args.seed, args.deterministic))
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed

    if args.pretrained is not None:
        assert isinstance(args.pretrained, str)
        cfg.model.pretrained = args.pretrained
    model = build_model(cfg.model)
    if args.local_rank == 0:
        print(model)
    if args.debug:
        logger.info(
            "DEBUGGING enabled, setting batch size to 64 to allow 1 gpu debugging"
        )
        cfg.data.batch_size = 64
        model.set_debug()

    datasets = [build_dataset(cfg.data.train)]
    assert len(cfg.workflow) == 1, "Validation is called by hook."
    if cfg.checkpoint_config is not None:
        # save openselfsup version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(openselfsup_version=__version__,
                                          config=cfg.text)

    if args.local_rank == 0:
        wandb.watch(model)

    # add an attribute for visualization convenience
    train_model(model,
                datasets,
                cfg,
                distributed=distributed,
                timestamp=timestamp,
                meta=meta,
                debug=args.debug)
Ejemplo n.º 4
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    # update configs according to CLI args
    if args.work_dir is not None:
        cfg.work_dir = args.work_dir

    cfg.model.pretrained = None  # ensure to use checkpoint rather than pretraining

    # check memcached package exists
    if importlib.util.find_spec('mc') is None:
        traverse_replace(cfg, 'memcached', False)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        if args.launcher == 'slurm':
            cfg.dist_params['port'] = args.port
        init_dist(args.launcher, **cfg.dist_params)

    # logger
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, 'test_{}.log'.format(timestamp))
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # build the dataloader
    dataset = build_dataset(cfg.data.val)
    data_loader = build_dataloader(dataset,
                                   imgs_per_gpu=cfg.data.imgs_per_gpu,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_model(cfg.model)

    activations = defaultdict(list)
    #idea from gist.github.com/Tushar-N/680633ec18f5cb4b47933da7d10902af
    if args.layer_type == nn.Linear:  #can save all activations

        def save_activation(name, mod, inp, out):
            activations[name].append(out.cpu())
    else:

        def save_activation(name, mod, inp, out):
            activations[name] = [out.cpu()]

    load_checkpoint(model, args.checkpoint, map_location='cpu')
    for name, m in model.named_modules():
        if type(m) == args.layer_type:
            m.register_forward_hook(partial(save_activation, name))

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        raise NotImplementedError(
            "Distributed Data Parallel does not register hooks.")
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader)  # dict{key: np.ndarray}

    activations = {
        name: torch.cat(outputs, 0)
        for name, outputs in activations.items()
    }

    act_file = osp.join(cfg.work_dir, "model_acts")
    np.savez(act_file, **activations)