Ejemplo n.º 1
0
def run_dataset(data: DataSetBase, input, output) -> None:
    recs_base = data.load_reconstruction(input)
    if len(recs_base) == 0:
        return

    rec_base = recs_base[0]
    tracks_manager = data.load_tracks_manager()
    rec_base.add_correspondences_from_tracks_manager(tracks_manager)

    images = data.images()
    remaining_images = set(images) - set(rec_base.shots)
    gcp = data.load_ground_control_points()
    report = {}
    rec_report = {}
    report["extend_reconstruction"] = [rec_report]
    rec, rec_report["grow"] = reconstruction.grow_reconstruction(
        data,
        tracks_manager,
        rec_base,
        remaining_images,
        gcp,
    )
    rec_report["num_remaining_images"] = len(remaining_images)
    report["not_reconstructed_images"] = list(remaining_images)
    data.save_reconstruction([rec], output)
    data.save_report(io.json_dumps(report), "reconstruction.json")
Ejemplo n.º 2
0
def run_dataset(data: DataSetBase, input: str, output: str) -> None:
    """Reconstruct the from a prior reconstruction."""

    tracks_manager = data.load_tracks_manager()
    rec_prior = data.load_reconstruction(input)
    if len(rec_prior) > 0:
        report, rec = reconstruction.reconstruct_from_prior(
            data, tracks_manager, rec_prior[0])
        data.save_reconstruction([rec], output)
        data.save_report(io.json_dumps(report), "reconstruction.json")
Ejemplo n.º 3
0
def run_dataset(data: DataSetBase) -> None:
    """Add delaunay meshes to the reconstruction."""

    tracks_manager = data.load_tracks_manager()
    reconstructions = data.load_reconstruction()

    all_shot_ids = set(tracks_manager.get_shot_ids())
    for r in reconstructions:
        for shot in r.shots.values():
            if shot.id in all_shot_ids:
                vertices, faces = mesh.triangle_mesh(shot.id, r,
                                                     tracks_manager)
                shot.mesh.vertices = vertices
                shot.mesh.faces = faces

    data.save_reconstruction(reconstructions,
                             filename="reconstruction.meshed.json",
                             minify=True)
Ejemplo n.º 4
0
def run_dataset(data: DataSetBase,
                algorithm: reconstruction.ReconstructionAlgorithm) -> None:
    """Compute the SfM reconstruction."""

    tracks_manager = data.load_tracks_manager()

    if algorithm == reconstruction.ReconstructionAlgorithm.INCREMENTAL:
        report, reconstructions = reconstruction.incremental_reconstruction(
            data, tracks_manager)
    elif algorithm == reconstruction.ReconstructionAlgorithm.TRIANGULATION:
        report, reconstructions = reconstruction.triangulation_reconstruction(
            data, tracks_manager)
    else:
        raise RuntimeError(
            f"Unsupported algorithm for reconstruction {algorithm}")

    data.save_reconstruction(reconstructions)
    data.save_report(io.json_dumps(report), "reconstruction.json")
Ejemplo n.º 5
0
def run_dataset(dataset: DataSetBase, input, output) -> None:
    """Bundle a reconstructions.

    Args:
        input: input reconstruction JSON in the dataset
        output: input reconstruction JSON in the dataset

    """

    reconstructions = dataset.load_reconstruction(input)
    camera_priors = dataset.load_camera_models()
    rig_cameras_priors = dataset.load_rig_cameras()
    tracks_manager = dataset.load_tracks_manager()

    # load the tracks manager and add its observations to the reconstruction
    # go through all the points and add their shots
    for reconstruction in reconstructions:
        reconstruction.add_correspondences_from_tracks_manager(tracks_manager)
        gcp = dataset.load_ground_control_points()
        orec.bundle(reconstruction, camera_priors, rig_cameras_priors, gcp,
                    dataset.config)
    dataset.save_reconstruction(reconstructions, output)