def track(self, prediction_solution, exponent=2): track = osim.MocoTrack() track.setName('suspended_mass_tracking') track.setModel(osim.ModelProcessor(self.build_model())) track.setStatesReference( osim.TableProcessor(prediction_solution.exportToStatesTable())) track.set_states_global_tracking_weight(10.0) track.set_allow_unused_references(True) # track.set_control_effort_weight(1.0) track.set_mesh_interval(0.003) study = track.initialize() problem = study.updProblem() problem.setStateInfo("/jointset/tx/tx/value", [-self.width, self.width], self.xinit) problem.setStateInfo("/jointset/ty/ty/value", [-2 * self.width, 0], self.yinit) problem.setStateInfo("/forceset/left/activation", [0, 1], 0) problem.setStateInfo("/forceset/middle/activation", [0, 1], 0) problem.setStateInfo("/forceset/right/activation", [0, 1], 0) problem.updPhase().setDefaultSpeedBounds(osim.MocoBounds(-15, 15)) tracking = osim.MocoStateTrackingGoal.safeDownCast( problem.updGoal('state_tracking')) tracking.setPattern('.*(value|speed)$') effort = osim.MocoControlGoal.safeDownCast( problem.updGoal('control_effort')) effort.setExponent(exponent) solver = osim.MocoCasADiSolver.safeDownCast(study.updSolver()) solver.set_optim_convergence_tolerance(-1) solver.set_optim_constraint_tolerance(-1) solution = study.solve() return solution
def muscleDrivenStateTracking(): # Create and name an instance of the MocoTrack tool. track = osim.MocoTrack() track.setName("muscle_driven_state_tracking") # Construct a ModelProcessor and set it on the tool. The default # muscles in the model are replaced with optimization-friendly # DeGrooteFregly2016Muscles, and adjustments are made to the default muscle # parameters. modelProcessor = osim.ModelProcessor("subject_walk_armless.osim") modelProcessor.append(osim.ModOpAddExternalLoads("grf_walk.xml")) modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) modelProcessor.append(osim.ModOpReplaceMusclesWithDeGrooteFregly2016()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) track.setModel(modelProcessor) # Construct a TableProcessor of the coordinate data and pass it to the # tracking tool. TableProcessors can be used in the same way as # ModelProcessors by appending TableOperators to modify the base table. # A TableProcessor with no operators, as we have here, simply returns the # base table. track.setStatesReference(osim.TableProcessor("coordinates.sto")) track.set_states_global_tracking_weight(10) # This setting allows extra data columns contained in the states # reference that don't correspond to model coordinates. track.set_allow_unused_references(True) # Since there is only coordinate position data in the states references, # this setting is enabled to fill in the missing coordinate speed data using # the derivative of splined position data. track.set_track_reference_position_derivatives(True) # Initial time, final time, and mesh interval. track.set_initial_time(0.81) track.set_final_time(1.65) track.set_mesh_interval(0.08) # Instead of calling solve(), call initialize() to receive a pre-configured # MocoStudy object based on the settings above. Use this to customize the # problem beyond the MocoTrack interface. study = track.initialize() # Get a reference to the MocoControlCost that is added to every MocoTrack # problem by default. problem = study.updProblem() effort = osim.MocoControlGoal.safeDownCast( problem.updGoal("control_effort")) # Put a large weight on the pelvis CoordinateActuators, which act as the # residual, or 'hand-of-god', forces which we would like to keep as small # as possible. model = modelProcessor.process() model.initSystem() forceSet = model.getForceSet() for i in range(forceSet.getSize()): forcePath = forceSet.get(i).getAbsolutePathString() if 'pelvis' in str(forcePath): effort.setWeightForControl(forcePath, 10) # Solve and visualize. solution = study.solve() study.visualize(solution)
def torqueDrivenMarkerTracking(): # Create and name an instance of the MocoTrack tool. track = osim.MocoTrack() track.setName("torque_driven_marker_tracking") # Construct a ModelProcessor and add it to the tool. ModelProcessors # accept a base model and allow you to easily modify the model by appending # ModelOperators. Operations are performed in the order that they are # appended to the model. # Create the base Model by passing in the model file. modelProcessor = osim.ModelProcessor("subject_walk_armless.osim") # Add ground reaction external loads in lieu of a ground-contact model. modelProcessor.append(osim.ModOpAddExternalLoads("grf_walk.xml")) # Remove all the muscles in the model's ForceSet. modelProcessor.append(osim.ModOpRemoveMuscles()) # Add CoordinateActuators to the model degrees-of-freedom. This ignores the # pelvis coordinates which already have residual CoordinateActuators. modelProcessor.append(osim.ModOpAddReserves(250)) track.setModel(modelProcessor) # Use this convenience function to set the MocoTrack markers reference # directly from a TRC file. By default, the markers data is filtered at # 6 Hz and if in millimeters, converted to meters. track.setMarkersReferenceFromTRC("marker_trajectories.trc") # There is marker data in the 'marker_trajectories.trc' associated with # model markers that no longer exists (i.e. markers on the arms). Set this # flag to avoid an exception from being thrown. track.set_allow_unused_references(True) # Increase the global marker tracking weight, which is the weight # associated with the internal MocoMarkerTrackingCost term. track.set_markers_global_tracking_weight(10) # Increase the tracking weights for individual markers in the data set # placed on bony landmarks compared to markers located on soft tissue. markerWeights = osim.MocoWeightSet() markerWeights.cloneAndAppend(osim.MocoWeight("R.ASIS", 20)) markerWeights.cloneAndAppend(osim.MocoWeight("L.ASIS", 20)) markerWeights.cloneAndAppend(osim.MocoWeight("R.PSIS", 20)) markerWeights.cloneAndAppend(osim.MocoWeight("L.PSIS", 20)) markerWeights.cloneAndAppend(osim.MocoWeight("R.Knee", 10)) markerWeights.cloneAndAppend(osim.MocoWeight("R.Ankle", 10)) markerWeights.cloneAndAppend(osim.MocoWeight("R.Heel", 10)) markerWeights.cloneAndAppend(osim.MocoWeight("R.MT5", 5)) markerWeights.cloneAndAppend(osim.MocoWeight("R.Toe", 2)) markerWeights.cloneAndAppend(osim.MocoWeight("L.Knee", 10)) markerWeights.cloneAndAppend(osim.MocoWeight("L.Ankle", 10)) markerWeights.cloneAndAppend(osim.MocoWeight("L.Heel", 10)) markerWeights.cloneAndAppend(osim.MocoWeight("L.MT5", 5)) markerWeights.cloneAndAppend(osim.MocoWeight("L.Toe", 2)) track.set_markers_weight_set(markerWeights) # Initial time, final time, and mesh interval. The number of mesh points # used to discretize the problem is computed internally using these values. track.set_initial_time(0.81) track.set_final_time(1.65) track.set_mesh_interval(0.05) # Solve! Use track.solve() to skip visualizing. solution = track.solveAndVisualize()
def run_tracking_problem(self, root_dir, config): modelProcessor = self.create_model_processor(root_dir, for_inverse=False, config=config) model = modelProcessor.process() model.initSystem() # Count the number of Force objects in the model. We'll use this to # normalize the control effort cost. numForces = 0 for actu in model.getComponentsList(): if (actu.getConcreteClassName().endswith('Muscle') or actu.getConcreteClassName().endswith('Actuator')): numForces += 1 # Construct the base tracking problem # ----------------------------------- track = osim.MocoTrack() track.setName('tracking_walking') track.setModel(modelProcessor) if self.coordinate_tracking: tableProcessor = osim.TableProcessor(os.path.join(root_dir, 'resources/Rajagopal2016/coordinates.mot')) tableProcessor.append(osim.TabOpLowPassFilter(6)) tableProcessor.append(osim.TabOpUseAbsoluteStateNames()) track.setStatesReference(tableProcessor) track.set_states_global_tracking_weight( config.tracking_weight / (2 * model.getNumCoordinates())) # Don't track some pelvis coordinates to avoid poor walking motion # solutions. stateWeights = osim.MocoWeightSet() weightList = list() weightList.append(('/jointset/ground_pelvis/pelvis_ty/value', 0)) weightList.append(('/jointset/ground_pelvis/pelvis_tz/value', 0)) weightList.append(('/jointset/ground_pelvis/pelvis_list/value', 0)) weightList.append(('/jointset/ground_pelvis/pelvis_tilt/value', 0)) weightList.append(('/jointset/ground_pelvis/pelvis_rotation/value', 0)) weightList.append(('/jointset/hip_r/hip_rotation_r/value', 0)) # weightList.append(('/jointset/hip_r/hip_adduction_r/value', 0)) weightList.append(('/jointset/hip_l/hip_rotation_l/value', 0)) # weightList.append(('/jointset/hip_l/hip_adduction_l/value', 0)) # weightList.append(('/jointset/ankle_r/ankle_angle_r/value', 10)) # weightList.append(('/jointset/ankle_l/ankle_angle_l/value', 10)) for weight in weightList: stateWeights.cloneAndAppend(osim.MocoWeight(weight[0], weight[1])) track.set_states_weight_set(stateWeights) track.set_apply_tracked_states_to_guess(True) # track.set_scale_state_weights_with_range(True); else: track.setMarkersReferenceFromTRC(os.path.join(root_dir, 'resources/Rajagopal2016/markers.trc')) track.set_markers_global_tracking_weight( config.tracking_weight / (2 * model.getNumMarkers())) iktool = osim.InverseKinematicsTool(os.path.join(root_dir, 'resources/Rajagopal2016/ik_setup_walk.xml')) iktasks = iktool.getIKTaskSet() markerWeights = osim.MocoWeightSet() for marker in model.getComponentsList(): if not type(marker) is osim.Marker: continue for i in np.arange(iktasks.getSize()): iktask = iktasks.get(int(i)) if iktask.getName() == marker.getName(): weight = osim.MocoWeight(iktask.getName(), iktask.getWeight()) markerWeights.cloneAndAppend(weight) track.set_markers_weight_set(markerWeights) track.set_allow_unused_references(True) track.set_track_reference_position_derivatives(True) track.set_control_effort_weight(config.effort_weight / numForces) track.set_initial_time(self.initial_time) track.set_final_time(self.half_time) track.set_mesh_interval(self.mesh_interval) # Customize the base tracking problem # ----------------------------------- study = track.initialize() problem = study.updProblem() problem.setTimeBounds(self.initial_time, [self.half_time-0.2, self.half_time+0.2]) # Set the initial values for the lumbar and pelvis coordinates that # produce "normal" walking motions. problem.setStateInfo('/jointset/back/lumbar_extension/value', [], -0.12) problem.setStateInfo('/jointset/back/lumbar_bending/value', [], 0) problem.setStateInfo('/jointset/back/lumbar_rotation/value', [], 0.04) problem.setStateInfo('/jointset/ground_pelvis/pelvis_tx/value', [], 0.446) problem.setStateInfo('/jointset/ground_pelvis/pelvis_tilt/value', [], 0) problem.setStateInfo('/jointset/ground_pelvis/pelvis_list/value', [], 0) problem.setStateInfo('/jointset/ground_pelvis/pelvis_rotation/value', [], 0) # Update the control effort goal to a cost of transport type cost. effort = osim.MocoControlGoal().safeDownCast( problem.updGoal('control_effort')) effort.setDivideByDisplacement(True) # Weight residual and reserve actuators low in the effort cost since # they are already weak. if config.effort_weight: for actu in model.getComponentsList(): actuName = actu.getName() if actu.getConcreteClassName().endswith('Actuator'): effort.setWeightForControl(actu.getAbsolutePathString(), 0.001) for muscle in ['psoas', 'iliacus']: for side in ['l', 'r']: effort.setWeightForControl( '/forceset/%s_%s' % (muscle, side), 0.25) speedGoal = osim.MocoAverageSpeedGoal('speed') speedGoal.set_desired_average_speed(1.235) problem.addGoal(speedGoal) # MocoFrameDistanceConstraint # --------------------------- if self.coordinate_tracking: distanceConstraint = osim.MocoFrameDistanceConstraint() distanceConstraint.setName('distance_constraint') # Step width is 0.13 * leg_length # distance = 0.10 # TODO Should be closer to 0.11. # Donelan JM, Kram R, Kuo AD. Mechanical and metabolic determinants # of the preferred step width in human walking. # Proc Biol Sci. 2001;268(1480):1985–1992. # doi:10.1098/rspb.2001.1761 # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088839/ distanceConstraint.addFramePair( osim.MocoFrameDistanceConstraintPair( '/bodyset/calcn_l', '/bodyset/calcn_r', 0.09, np.inf)) distanceConstraint.addFramePair( osim.MocoFrameDistanceConstraintPair( '/bodyset/toes_l', '/bodyset/toes_r', 0.06, np.inf)) # distanceConstraint.addFramePair( # osim.MocoFrameDistanceConstraintPair( # '/bodyset/calcn_l', '/bodyset/toes_r', distance, np.inf)) # distanceConstraint.addFramePair( # osim.MocoFrameDistanceConstraintPair( # '/bodyset/toes_l', '/bodyset/calcn_r', distance, np.inf)) distanceConstraint.setProjection("vector") distanceConstraint.setProjectionVector(osim.Vec3(0, 0, 1)) problem.addPathConstraint(distanceConstraint) # Symmetry constraints # -------------------- statesRef = osim.TimeSeriesTable('tracking_walking_tracked_states.sto') initIndex = statesRef.getNearestRowIndexForTime(self.initial_time) symmetry = osim.MocoPeriodicityGoal('symmetry') # Symmetric coordinate values (except for pelvis_tx) and speeds. for coord in model.getComponentsList(): if not type(coord) is osim.Coordinate: continue coordName = coord.getName() coordValue = coord.getStateVariableNames().get(0) coordSpeed = coord.getStateVariableNames().get(1) if coordName.endswith('_r'): symmetry.addStatePair(osim.MocoPeriodicityGoalPair( coordValue, coordValue.replace('_r/', '_l/'))) symmetry.addStatePair(osim.MocoPeriodicityGoalPair( coordSpeed, coordSpeed.replace('_r/', '_l/'))) elif coordName.endswith('_l'): symmetry.addStatePair(osim.MocoPeriodicityGoalPair( coordValue, coordValue.replace('_l/', '_r/'))) symmetry.addStatePair(osim.MocoPeriodicityGoalPair( coordSpeed, coordSpeed.replace('_l/', '_r/'))) elif (coordName.endswith('_bending') or coordName.endswith('_rotation') or coordName.endswith('_tz') or coordName.endswith('_list')): # This does not include hip rotation, # because that ends with _l or _r. symmetry.addStatePair(osim.MocoPeriodicityGoalPair( coordValue)) symmetry.addNegatedStatePair(osim.MocoPeriodicityGoalPair( coordSpeed)) elif not coordName.endswith('_tx'): symmetry.addStatePair(osim.MocoPeriodicityGoalPair( coordValue)) symmetry.addStatePair(osim.MocoPeriodicityGoalPair( coordSpeed)) symmetry.addStatePair(osim.MocoPeriodicityGoalPair( '/jointset/ground_pelvis/pelvis_tx/speed')) # Symmetric activations. for actu in model.getComponentsList(): if (not actu.getConcreteClassName().endswith('Muscle') and not actu.getConcreteClassName().endswith('Actuator')): continue if actu.getName().endswith('_r'): symmetry.addStatePair(osim.MocoPeriodicityGoalPair( actu.getStateVariableNames().get(0), actu.getStateVariableNames().get(0).replace('_r/', '_l/'))) elif actu.getName().endswith('_l'): symmetry.addStatePair(osim.MocoPeriodicityGoalPair( actu.getStateVariableNames().get(0), actu.getStateVariableNames().get(0).replace('_l/', '_r/'))) elif (actu.getName().endswith('_bending') or actu.getName().endswith('_rotation') or actu.getName().endswith('_tz') or actu.getName().endswith('_list')): symmetry.addNegatedStatePair(osim.MocoPeriodicityGoalPair( actu.getStateVariableNames().get(0), actu.getStateVariableNames().get(0))) else: symmetry.addStatePair(osim.MocoPeriodicityGoalPair( actu.getStateVariableNames().get(0), actu.getStateVariableNames().get(0))) problem.addGoal(symmetry) # Contact tracking # ---------------- forceNamesRightFoot = ['forceset/contactSphereHeel_r', 'forceset/contactLateralRearfoot_r', 'forceset/contactLateralMidfoot_r', 'forceset/contactLateralToe_r', 'forceset/contactMedialToe_r', 'forceset/contactMedialMidfoot_r'] forceNamesLeftFoot = ['forceset/contactSphereHeel_l', 'forceset/contactLateralRearfoot_l', 'forceset/contactLateralMidfoot_l', 'forceset/contactLateralToe_l', 'forceset/contactMedialToe_l', 'forceset/contactMedialMidfoot_l'] if self.contact_tracking: contactTracking = osim.MocoContactTrackingGoal('contact', 0.001) contactTracking.setExternalLoadsFile( 'resources/Rajagopal2016/grf_walk.xml') contactTracking.addContactGroup(forceNamesRightFoot, 'Right_GRF') contactTracking.addContactGroup(forceNamesLeftFoot, 'Left_GRF') contactTracking.setProjection("plane") contactTracking.setProjectionVector(osim.Vec3(0, 0, 1)) problem.addGoal(contactTracking) # Configure the solver # -------------------- solver = osim.MocoCasADiSolver.safeDownCast(study.updSolver()) solver.resetProblem(problem) solver.set_optim_constraint_tolerance(1e-3) solver.set_optim_convergence_tolerance(1e-3) solver.set_multibody_dynamics_mode('implicit') solver.set_minimize_implicit_multibody_accelerations(True) solver.set_implicit_multibody_accelerations_weight( 1e-6 / model.getNumCoordinates()) solver.set_implicit_multibody_acceleration_bounds( osim.MocoBounds(-200, 200)) # Set the guess # ------------- # Create a guess compatible with this problem. guess = solver.createGuess() # Load the inverse problem solution and set its states and controls # trajectories to the guess. inverseSolution = osim.MocoTrajectory( os.path.join(root_dir, self.inverse_solution_relpath)) inverseStatesTable = inverseSolution.exportToStatesTable() guess.insertStatesTrajectory(inverseStatesTable, True) # Changing this initial guess has a large negative effect on the # solution! Lots of knee flexion. # guess.setState('/jointset/ground_pelvis/pelvis_ty/value', # osim.Vector(guess.getNumTimes(), 1.01)) inverseControlsTable = inverseSolution.exportToControlsTable() guess.insertControlsTrajectory(inverseControlsTable, True) solver.setGuess(guess) # Solve and print solution. # ------------------------- solution = study.solve() solution.write(self.get_solution_path(root_dir, config)) # Create a full gait cycle trajectory from the periodic solution. fullTraj = osim.createPeriodicTrajectory(solution) fullTraj.write(self.get_solution_path_fullcycle(root_dir, config)) # Compute ground reaction forces generated by contact sphere from the # full gait cycle trajectory. externalLoads = osim.createExternalLoadsTableForGait( model, fullTraj, forceNamesRightFoot, forceNamesLeftFoot) osim.writeTableToFile(externalLoads, self.get_solution_path_grfs(root_dir, config))
def muscleDrivenStateTracking(): #Create and name an instance of the MocoTrack tool. track = osim.MocoTrack() track.setName('muscleDrivenStateTracking') #Construct a ModelProcessor and set it on the tool. #Currently the coordinate actuators for the pelvis, along with the reserve #actuators are fairly generally set, and not weighted at all in cost function. #These actuators could be more carefully considered to generate an appropriate #muscle driven simulation. For example, if they max and min control to 1 - the #pelvis actuators may not produce enough torque. modelProcessor = osim.ModelProcessor('scaledModelMuscle.osim') modelProcessor.append(osim.ModOpAddExternalLoads('Jog05_grf.xml')) modelProcessor.append(osim.ModOpIgnoreTendonCompliance()) modelProcessor.append(osim.ModOpReplaceMusclesWithDeGrooteFregly2016()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpIgnorePassiveFiberForcesDGF()) # Only valid for DeGrooteFregly2016Muscles. modelProcessor.append(osim.ModOpScaleActiveFiberForceCurveWidthDGF(1.5)) modelProcessor.append(osim.ModOpAddReserves(2)) track.setModel(modelProcessor) #Construct a TableProcessor of the coordinate data and pass it to the #tracking tool. TableProcessors can be used in the same way as #ModelProcessors by appending TableOperators to modify the base table. #A TableProcessor with no operators, as we have here, simply returns the #base table. track.setStatesReference(osim.TableProcessor('ikResults_states.sto')) track.set_states_global_tracking_weight(5) ##### TODO: add more specific weights for different state coordinates like in RRA #This setting allows extra data columns contained in the states #reference that don't correspond to model coordinates. track.set_allow_unused_references(True) # Since there is only coordinate position data the states references, this # setting is enabled to fill in the missing coordinate speed data using # the derivative of splined position data. track.set_track_reference_position_derivatives(True) # Initial time, final time, and mesh interval. track.set_initial_time(osim.Storage('ikResults_states.sto').getFirstTime()) track.set_final_time(osim.Storage('ikResults_states.sto').getLastTime()) track.set_mesh_interval(0.08) #Instead of calling solve(), call initialize() to receive a pre-configured #MocoStudy object based on the settings above. Use this to customize the #problem beyond the MocoTrack interface. study = track.initialize() #Get a reference to the MocoControlCost that is added to every MocoTrack #problem by default. problem = study.updProblem() effort = osim.MocoControlGoal.safeDownCast(problem.updGoal('control_effort')) effort.setWeight(1) # # Put a large weight on the pelvis CoordinateActuators, which act as the # # residual, or 'hand-of-god', forces which we would like to keep as small # # as possible. # model = modelProcessor.process() # model.initSystem() # forceSet = model.getForceSet() # for ii in range(forceSet.getSize()): # forcePath = forceSet.get(ii).getAbsolutePathString() # if 'pelvis' in str(forcePath): # effort.setWeightForControl(forcePath, 10) #Get solver and set the mesh interval solver = study.initCasADiSolver() #50 mesh intervals for half gait cycle recommended, keep smaller for now #19 will produce the same as inverse solution above # solver.set_num_mesh_intervals(19) #Set solver parameters solver.set_optim_constraint_tolerance(1e-3) solver.set_optim_convergence_tolerance(1e-3) # Solve and visualize. solution = study.solve() #Return the solution as an object that we can use return solution
def torqueDrivenStateTracking(): #Create and name an instance of the MocoTrack tool. track = osim.MocoTrack() track.setName('torqueDrivenStateTracking') #Construct a ModelProcessor and set it on the tool. Remove the muscles and #add reserve actuators modelProcessor = osim.ModelProcessor('scaledModelMuscle.osim') modelProcessor.append(osim.ModOpAddExternalLoads('Jog05_grf.xml')) modelProcessor.append(osim.ModOpRemoveMuscles()) modelProcessor.append(osim.ModOpAddReserves(300)) track.setModel(modelProcessor) #Construct a TableProcessor of the coordinate data and pass it to the #tracking tool. TableProcessors can be used in the same way as #ModelProcessors by appending TableOperators to modify the base table. #A TableProcessor with no operators, as we have here, simply returns the #base table. track.setStatesReference(osim.TableProcessor('ikResults_states.sto')) track.set_states_global_tracking_weight(5) ##### TODO: add more specific weights for different state coordinates like in RRA #This setting allows extra data columns contained in the states #reference that don't correspond to model coordinates. track.set_allow_unused_references(True) # Since there is only coordinate position data the states references, this # setting is enabled to fill in the missing coordinate speed data using # the derivative of splined position data. track.set_track_reference_position_derivatives(True) # Initial time, final time, and mesh interval. track.set_initial_time(osim.Storage('ikResults_states.sto').getFirstTime()) track.set_final_time(osim.Storage('ikResults_states.sto').getLastTime()) track.set_mesh_interval(0.08) #Instead of calling solve(), call initialize() to receive a pre-configured #MocoStudy object based on the settings above. Use this to customize the #problem beyond the MocoTrack interface. study = track.initialize() #Get a reference to the MocoControlCost that is added to every MocoTrack #problem by default. problem = study.updProblem() effort = osim.MocoControlGoal.safeDownCast(problem.updGoal('control_effort')) effort.setWeight(1) # # Put a large weight on the pelvis CoordinateActuators, which act as the # # residual, or 'hand-of-god', forces which we would like to keep as small # # as possible. # model = modelProcessor.process() # model.initSystem() # forceSet = model.getForceSet() # for ii in range(forceSet.getSize()): # forcePath = forceSet.get(ii).getAbsolutePathString() # if 'pelvis' in str(forcePath): # effort.setWeightForControl(forcePath, 10) #Get solver and set the mesh interval solver = study.initCasADiSolver() #50 mesh intervals for half gait cycle recommended, keep smaller for now #19 will produce the same as inverse solution above # solver.set_num_mesh_intervals(19) #Set solver parameters solver.set_optim_constraint_tolerance(1e-3) solver.set_optim_convergence_tolerance(1e-3) #Set guess from inverse solution using the convenience function to transfer #an inverse solution to a solver guess osimHelper.inverseSolutionToTrackGuess(guessFile = 'inverseTorqueSolution_fromIK.sto', mocoSolver = solver) # Solve and visualize. solution = study.solve() #Return the solution as an object that we can use return solution
return solution #Run solution stateTrackingMuscleSolution = muscleDrivenStateTracking() # %% Replicate the muscle driven state tracking example...but make it torque driven... #Replicate moco track example ##### TODO: set in function # Create and name an instance of the MocoTrack tool. track = osim.MocoTrack() track.setName("torque_driven_state_tracking") #Probably need to turn off contact element forceset elements # trackModel = osim.Model("scaledModelAdjusted.osim") # for ii in range(0,trackModel.updForceSet().getSize()-1): # #Get current force name # currForce = trackModel.updForceSet().get(ii).getName() # #Turn off if a contact element # if 'contact' in currForce: # trackModel.updForceSet().get(ii).set_appliesForce(False) ##### TODO: keep the spheres, but these haven't been adjusted yet... # #Finalize # trackModel.finalizeConnections()