p = 2
q = 1
dim = 2

# Make a realization of an ARMA model
# Tmin , Tmax and N points for TimeGrid
dt = 1.0
size = 400
timeGrid = ot.RegularGrid(0.0, dt, size)

# white noise
cov = ot.CovarianceMatrix([[0.1, 0.0], [0.0, 0.2]])
whiteNoise = ot.WhiteNoise(ot.Normal([0.0] * dim, cov), timeGrid)

# AR/MA coefficients
ar = ot.ARMACoefficients(p, dim)
ar[0] = ot.SquareMatrix([[-0.5, -0.1], [-0.4, -0.5]])
ar[1] = ot.SquareMatrix([[0.0, 0.0], [-0.25, 0.0]])

ma = ot.ARMACoefficients(q, dim)
ma[0] = ot.SquareMatrix([[-0.4, 0.0], [0.0, -0.4]])

# ARMA model creation
myARMA = ot.ARMA(ar, ma, whiteNoise)

# Create a realization
timeSeries = ot.TimeSeries(myARMA.getRealization())

cov[0, 0] += 0.01 * ot.DistFunc.rNormal()
cov[1, 1] += 0.01 * ot.DistFunc.rNormal()
Ejemplo n.º 2
0
from __future__ import print_function
import openturns as ot
import matplotlib.pyplot as plt
ot.RandomGenerator.SetSeed(0)
ot.Log.Show(ot.Log.NONE)

# %%
# Create an arma process

tMin = 0.0
n = 1000
timeStep = 0.1
myTimeGrid = ot.RegularGrid(tMin, timeStep, n)

myWhiteNoise = ot.WhiteNoise(ot.Triangular(-1.0, 0.0, 1.0), myTimeGrid)
myARCoef = ot.ARMACoefficients([0.4, 0.3, 0.2, 0.1])
myMACoef = ot.ARMACoefficients([0.4, 0.3])
arma = ot.ARMA(myARCoef, myMACoef, myWhiteNoise)

tseries = ot.TimeSeries(arma.getRealization())

# Create a sample of N time series from the process
N = 100
sample = arma.getSample(N)

# %%
# CASE 1 : we specify a (p,q) order

# Specify the order (p,q)
p = 4
q = 2
#! /usr/bin/env python

import openturns as ot

size = 100

# ARMA parameters
arcoefficients = ot.ARMACoefficients([0.3])
macoefficients = ot.ARMACoefficients(0)
timeGrid = ot.RegularGrid(0.0, 0.1, size)

# White noise ==> gaussian
whiteNoise = ot.WhiteNoise(ot.Normal(), timeGrid)
myARMA = ot.ARMA(arcoefficients, macoefficients, whiteNoise)

# A realization of the ARMA process
# The realization is supposed to be of a stationnary process
realization = ot.TimeSeries(myARMA.getRealization())

# In the strategy of tests, one has to detect a trend tendency
# We check if the time series writes as x_t = a +b * t + c * x_{t-1}
# H0 = c is equal to one and thus
# p-value threshold : probability of the H0 reject zone : 0.05
# p-value : probability (test variable decision > test variable decision (statistic) evaluated on data)
# Test = True <=> p-value > p-value threshold
test = ot.DickeyFullerTest(realization)
print("Drift and linear trend model=",
      test.testUnitRootInDriftAndLinearTrendModel(0.05))
print("Drift model=", test.testUnitRootInDriftModel(0.05))
print("AR1 model=", test.testUnitRootInAR1Model(0.05))