import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View

myDist = [ot.Beta(1.5, 3.2, 0.0, 1.0), ot.Beta(2.0, 4.3, 0.5, 1.2)]
myOrderStatCop = ot.MaximumEntropyOrderStatisticsCopula(myDist)
myOrderStatCop.setDescription(['$u_1$', '$u_2$'])
graphPDF = myOrderStatCop.drawPDF()
graphCDF = myOrderStatCop.drawCDF()

fig = plt.figure(figsize=(8, 4))
plt.suptitle("Max Entropy Order Statistics Copula: pdf and cdf")
pdf_axis = fig.add_subplot(121)
cdf_axis = fig.add_subplot(122)
pdf_axis.set_xlim(auto=True)
cdf_axis.set_xlim(auto=True)

View(graphPDF, figure=fig, axes=[pdf_axis], add_legend=True)
View(graphCDF, figure=fig, axes=[cdf_axis], add_legend=True)
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.MaximumEntropyOrderStatisticsCopula(
).__class__.__name__ == 'EmpiricalBernsteinCopula':
    sample = ot.Dirichlet([1.0, 2.0, 3.0]).getSample(100)
    copula = ot.EmpiricalBernsteinCopula(sample, 4)
elif ot.MaximumEntropyOrderStatisticsCopula(
).__class__.__name__ == 'ExtremeValueCopula':
    copula = ot.ExtremeValueCopula(ot.SymbolicFunction("t", "t^3/2-t/2+1"))
elif ot.MaximumEntropyOrderStatisticsCopula(
).__class__.__name__ == 'MaximumEntropyOrderStatisticsCopula':
    marginals = [ot.Beta(1.5, 3.2, 0.0, 1.0), ot.Beta(2.0, 4.3, 0.5, 1.2)]
    copula = ot.MaximumEntropyOrderStatisticsCopula(marginals)
elif ot.MaximumEntropyOrderStatisticsCopula(
).__class__.__name__ == 'NormalCopula':
    R = ot.CorrelationMatrix(2)
    R[1, 0] = 0.8
    copula = ot.NormalCopula(R)
elif ot.MaximumEntropyOrderStatisticsCopula(
).__class__.__name__ == 'SklarCopula':
    student = ot.Student(3.0, [1.0] * 2, [3.0] * 2, ot.CorrelationMatrix(2))
    copula = ot.SklarCopula(student)
else:
    copula = ot.MaximumEntropyOrderStatisticsCopula()
if copula.getDimension() == 1:
    copula = ot.MaximumEntropyOrderStatisticsCopula(2)
copula.setDescription(['$u_1$', '$u_2$'])
pdf_graph = copula.drawPDF()
cdf_graph = copula.drawCDF()
fig = plt.figure(figsize=(10, 4))
Ejemplo n.º 3
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.FrankCopula().__class__.__name__ == 'EmpiricalBernsteinCopula':
    sample = ot.Dirichlet([1.0, 2.0, 3.0]).getSample(100)
    copula = ot.EmpiricalBernsteinCopula(sample, 4)
elif ot.FrankCopula().__class__.__name__ == 'ExtremeValueCopula':
    copula = ot.ExtremeValueCopula(ot.SymbolicFunction("t", "t^3/2-t/2+1"))
elif ot.FrankCopula(
).__class__.__name__ == 'MaximumEntropyOrderStatisticsCopula':
    marginals = [ot.Beta(1.5, 3.2, 0.0, 1.0), ot.Beta(2.0, 4.3, 0.5, 1.2)]
    copula = ot.MaximumEntropyOrderStatisticsCopula(marginals)
elif ot.FrankCopula().__class__.__name__ == 'NormalCopula':
    R = ot.CorrelationMatrix(2)
    R[1, 0] = 0.8
    copula = ot.NormalCopula(R)
elif ot.FrankCopula().__class__.__name__ == 'SklarCopula':
    student = ot.Student(3.0, [1.0] * 2, [3.0] * 2, ot.CorrelationMatrix(2))
    copula = ot.SklarCopula(student)
else:
    copula = ot.FrankCopula()
if copula.getDimension() == 1:
    copula = ot.FrankCopula(2)
copula.setDescription(['$u_1$', '$u_2$'])
pdf_graph = copula.drawPDF()
cdf_graph = copula.drawCDF()
fig = plt.figure(figsize=(10, 4))
pdf_axis = fig.add_subplot(121)
cdf_axis = fig.add_subplot(122)
View(pdf_graph,
     figure=fig,
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

ot.TESTPREAMBLE()
ot.RandomGenerator.SetSeed(0)

# Instanciate one copula object
copula = ot.MaximumEntropyOrderStatisticsCopula([
    ot.Trapezoidal(-2.0, -1.1, -1.0, 1.0),
    ot.LogUniform(1.0, 1.2),
    ot.Triangular(3.0, 4.5, 5.0),
    ot.Beta(2.5, 3.5, 4.7, 5.2)
])

dim = copula.getDimension()
print("Copula ", copula)

# Is this copula an elliptical copula?
print("Elliptical copula= ", copula.isElliptical())

# Is this copula elliptical ?
print("Elliptical copula= ", copula.hasEllipticalCopula())

# Is this copula independent ?
print("Independent copula= ", copula.hasIndependentCopula())

# Test for realization of copula
oneRealization = copula.getRealization()
print("oneRealization=", repr(oneRealization))