#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

ot.TESTPREAMBLE()
ot.RandomGenerator.SetSeed(0)

# Instanciate one distribution object
distribution = ot.MaximumEntropyOrderStatisticsDistribution([
    ot.Trapezoidal(-2.0, -1.1, -1.0, 1.0),
    ot.LogUniform(1.0, 1.2),
    ot.Triangular(3.0, 4.5, 5.0),
    ot.Beta(2.5, 3.5, 4.7, 5.2)
])

dim = distribution.getDimension()
print("Distribution ", distribution)

# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))

# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", repr(oneSample[0]), " last=",
      repr(oneSample[size - 1]))
Ejemplo n.º 2
0
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

ot.RandomGenerator.SetSeed(0)

ot.ResourceMap.SetAsBool('MaximumLikelihoodFactory-Parallel', False)

distribution = ot.Trapezoidal(1.0, 2.3, 4.5, 5.0)
size = 10000
sample = distribution.getSample(size)
factory = ot.TrapezoidalFactory()
estimatedDistribution = factory.build(sample)
print("distribution=", repr(distribution))
oldPrecision = ot.PlatformInfo.GetNumericalPrecision()
ot.PlatformInfo.SetNumericalPrecision(4)
print("Estimated distribution=", repr(estimatedDistribution))
ot.PlatformInfo.SetNumericalPrecision(oldPrecision)
estimatedDistribution = factory.build()
print("Default distribution=", estimatedDistribution)
estimatedDistribution = factory.build(distribution.getParameter())
print("Distribution from parameters=", estimatedDistribution)
estimatedTrapezoidal = factory.buildAsTrapezoidal(sample)
print("Trapezoidal          =", distribution)
oldPrecision = ot.PlatformInfo.GetNumericalPrecision()
ot.PlatformInfo.SetNumericalPrecision(4)
print("Estimated trapezoidal=", estimatedTrapezoidal)
ot.PlatformInfo.SetNumericalPrecision(oldPrecision)
estimatedTrapezoidal = factory.buildAsTrapezoidal()
print("Default trapezoidal=", estimatedTrapezoidal)
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.Trapezoidal().__class__.__name__ == 'Bernoulli':
    distribution = ot.Bernoulli(0.7)
elif ot.Trapezoidal().__class__.__name__ == 'Binomial':
    distribution = ot.Binomial(5, 0.2)
elif ot.Trapezoidal().__class__.__name__ == 'ComposedDistribution':
    copula = ot.IndependentCopula(2)
    marginals = [ot.Uniform(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, copula)
elif ot.Trapezoidal().__class__.__name__ == 'CumulativeDistributionNetwork':
    coll = [ot.Normal(2),ot.Dirichlet([0.5, 1.0, 1.5])]
    distribution = ot.CumulativeDistributionNetwork(coll, ot.BipartiteGraph([[0,1], [0,1]]))
elif ot.Trapezoidal().__class__.__name__ == 'Histogram':
    distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15])
elif ot.Trapezoidal().__class__.__name__ == 'KernelMixture':
    kernel = ot.Uniform()
    sample = ot.Normal().getSample(5)
    bandwith = [1.0]
    distribution = ot.KernelMixture(kernel, bandwith, sample)
elif ot.Trapezoidal().__class__.__name__ == 'MaximumDistribution':
    coll = [ot.Uniform(2.5, 3.5), ot.LogUniform(1.0, 1.2), ot.Triangular(2.0, 3.0, 4.0)]
    distribution = ot.MaximumDistribution(coll)
elif ot.Trapezoidal().__class__.__name__ == 'Multinomial':
    distribution = ot.Multinomial(5, [0.2])
elif ot.Trapezoidal().__class__.__name__ == 'RandomMixture':
    coll = [ot.Triangular(0.0, 1.0, 5.0), ot.Uniform(-2.0, 2.0)]
    weights = [0.8, 0.2]
    cst = 3.0
    distribution = ot.RandomMixture(coll, weights, cst)
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if (ot.Trapezoidal().__class__.__name__ == 'ComposedDistribution'):
    correlation = ot.CorrelationMatrix(2)
    correlation[1, 0] = 0.25
    aCopula = ot.NormalCopula(correlation)
    marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, aCopula)
elif (ot.Trapezoidal().__class__.__name__ == 'CumulativeDistributionNetwork'):
    distribution = ot.CumulativeDistributionNetwork(
        [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])],
        ot.BipartiteGraph([[0, 1], [0, 1]]))
else:
    distribution = ot.Trapezoidal()
dimension = distribution.getDimension()
if dimension <= 2:
    if distribution.getDimension() == 1:
        distribution.setDescription(['$x$'])
        pdf_graph = distribution.drawPDF()
        cdf_graph = distribution.drawCDF()
        fig = plt.figure(figsize=(10, 4))
        plt.suptitle(str(distribution))
        pdf_axis = fig.add_subplot(121)
        cdf_axis = fig.add_subplot(122)
        View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False)
        View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False)
    else:
        distribution.setDescription(['$x_1$', '$x_2$'])
        pdf_graph = distribution.drawPDF()
        fig = plt.figure(figsize=(10, 5))
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.Trapezoidal().__class__.__name__ == 'ComposedDistribution':
    correlation = ot.CorrelationMatrix(2)
    correlation[1, 0] = 0.25
    aCopula = ot.NormalCopula(correlation)
    marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, aCopula)
elif ot.Trapezoidal().__class__.__name__ == 'CumulativeDistributionNetwork':
    distribution = ot.CumulativeDistributionNetwork(
        [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])],
        ot.BipartiteGraph([[0, 1], [0, 1]]))
elif ot.Trapezoidal().__class__.__name__ == 'Histogram':
    distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15])
else:
    distribution = ot.Trapezoidal()
dimension = distribution.getDimension()
if dimension == 1:
    distribution.setDescription(['$x$'])
    pdf_graph = distribution.drawPDF()
    cdf_graph = distribution.drawCDF()
    fig = plt.figure(figsize=(10, 4))
    plt.suptitle(str(distribution))
    pdf_axis = fig.add_subplot(121)
    cdf_axis = fig.add_subplot(122)
    View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False)
    View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False)
elif dimension == 2:
    distribution.setDescription(['$x_1$', '$x_2$'])
    pdf_graph = distribution.drawPDF()