Ejemplo n.º 1
0
def discretizeFromJoint(fullDistribution, ticks):
    fullDimension = fullDistribution.getDimension()
    conditioningDistribution = fullDistribution.getMarginal(
        [i for i in range(fullDimension - 1)])
    # Add the range bounds to the given ticks
    lower = fullDistribution.getRange().getLowerBound()
    upper = fullDistribution.getRange().getUpperBound()
    expandedTicks = [0] * len(ticks)
    for i in range(fullDimension):
        expandedTicks[i] = [lower[i]] + ticks[i] + [upper[i]]
    # Now perform the full discretization
    lengths = [(len(t) - 1) for t in expandedTicks]
    tuples = ot.Tuples(lengths).generate()
    probabilities = ot.Point(len(tuples))
    for i in range(len(tuples)):
        tuple = tuples[i]
        aFull = [expandedTicks[j][tuple[j]] for j in range(fullDimension)]
        bFull = [expandedTicks[j][tuple[j] + 1] for j in range(fullDimension)]
        aConditioning = [
            expandedTicks[j][tuple[j]] for j in range(fullDimension - 1)
        ]
        bConditioning = [
            expandedTicks[j][tuple[j] + 1] for j in range(fullDimension - 1)
        ]
        den = conditioningDistribution.computeProbability(
            ot.Interval(aConditioning, bConditioning))
        if den > 0.0:
            num = fullDistribution.computeProbability(ot.Interval(
                aFull, bFull))
            probabilities[i] = num / den
    return probabilities
Ejemplo n.º 2
0
def discretizeBernoulliFromConditionalProbability(conditionalProbability,
                                                  conditioningDistribution,
                                                  ticks,
                                                  useSlowIntegration=True,
                                                  nodesNumber=32):
    conditioningDimension = conditioningDistribution.getDimension()
    if useSlowIntegration:
        # Accurate but slow
        integrator = ot.IteratedQuadrature()
    else:
        # Less accurate for non-smooth integrand but fast
        ot.ResourceMap.SetAsUnsignedInteger(
            "GaussLegendre-DefaultMarginalIntegrationPointsNumber",
            nodesNumber)
        integrator = ot.GaussLegendre(conditioningDimension)

    # Add the range bounds to the given ticks
    lower = list(conditioningDistribution.getRange().getLowerBound())
    upper = list(conditioningDistribution.getRange().getUpperBound())
    # Add the range bounds to the given ticks
    lower = conditioningDistribution.getRange().getLowerBound()
    upper = conditioningDistribution.getRange().getUpperBound()
    expandedTicks = [0] * len(ticks)
    for i in range(conditioningDimension):
        expandedTicks[i] = [lower[i]] + ticks[i] + [upper[i]]
    # Now perform the full discretization
    lengths = [(len(t) - 1) for t in expandedTicks]
    tuples = ot.Tuples(lengths).generate()
    probabilitiesTrue = [0] * len(tuples)

    def kernel(x):
        x = np.array(x)
        return conditionalProbability(x) * np.array(
            conditioningDistribution.computePDF(x[:, 0:conditioningDimension]))

    for i in range(len(tuples)):
        tuple = tuples[i]
        aConditioning = [
            expandedTicks[j][tuple[j]] for j in range(conditioningDimension)
        ]
        bConditioning = [
            expandedTicks[j][tuple[j] + 1]
            for j in range(conditioningDimension)
        ]
        den = conditioningDistribution.computeProbability(
            ot.Interval(aConditioning, bConditioning))
        if den > 0.0:
            num = integrator.integrate(
                ot.PythonFunction(conditioningDimension, 1,
                                  func_sample=kernel),
                ot.Interval(aConditioning, bConditioning))[0]
            probabilitiesTrue[i] = min(1.0, num / den)
        probabilities = ot.Point([1.0 - p for p in probabilitiesTrue] +
                                 probabilitiesTrue)
    return probabilities
Ejemplo n.º 3
0
def discretizeFromConditionalDensity(conditionalDensity,
                                     conditioningDistribution,
                                     ticks,
                                     useSlowIntegration=True,
                                     nodesNumber=32):
    fullDimension = conditioningDistribution.getDimension() + 1
    if useSlowIntegration:
        # Accurate but slow
        integrator = ot.IteratedQuadrature()
    else:
        # Less accurate for non-smooth integrand but fast
        ot.ResourceMap.SetAsUnsignedInteger(
            "GaussLegendre-DefaultMarginalIntegrationPointsNumber",
            nodesNumber)
        integrator = ot.GaussLegendre(fullDimension)
    # Add the range bounds to the given ticks
    lower = list(conditioningDistribution.getRange().getLowerBound())
    upper = list(conditioningDistribution.getRange().getUpperBound())
    # For the conditioned variable it has to be estimated. We assume that the given
    # tick range is a correct margin to get the lower and upper bounds
    conditionedMin = min(ticks[fullDimension - 1])
    conditionedMax = max(ticks[fullDimension - 1])
    delta = conditionedMax - conditionedMin
    lower = lower + [conditionedMin - delta]
    upper = upper + [conditionedMax + delta]
    expandedTicks = [0] * fullDimension
    for i in range(fullDimension):
        expandedTicks[i] = [lower[i]] + ticks[i] + [upper[i]]
    # Now perform the full discretization
    lengths = [(len(t) - 1) for t in expandedTicks]
    tuples = ot.Tuples(lengths).generate()
    probabilities = ot.Point(len(tuples))

    def kernel(x):
        x = np.array(x)
        return conditionalDensity(x) * np.array(
            conditioningDistribution.computePDF(x[:, 0:fullDimension - 1]))

    for i in range(len(tuples)):
        tuple = tuples[i]
        aFull = [expandedTicks[j][tuple[j]] for j in range(fullDimension)]
        bFull = [expandedTicks[j][tuple[j] + 1] for j in range(fullDimension)]
        num = integrator.integrate(
            ot.PythonFunction(fullDimension, 1, func_sample=kernel),
            ot.Interval(aFull, bFull))[0]
        probabilities[i] = num
    return probabilities
import openturns as ot
from openturns.viewer import View

# Tuples
d = ot.Tuples([3, 4, 5])
s = ot.Sample(d.generate())
s.setDescription(["X1", "X2", "X3"])
g = ot.Graph()
g.setTitle("Tuples generator")
g.setGridColor("black")
p = ot.Pairs(s)
g.add(p)
View(g)
Ejemplo n.º 5
0
       ' + 17*x1^3 - 10*x2^3 + 7*x4^3'])

Y = myLinearModel(X) + R
print(Y)

################################################################################################
# Build a model Y~(X1+X2+X3+X4)^3+I(Xi)^2+I(Xi)^3
dim = X.getDimension()
enumerateFunction = ot.EnumerateFunction(dim)
factory = ot.OrthogonalProductPolynomialFactory([ot.MonomialFactory()]*dim, enumerateFunction)

# Build 'interactions' as a list of list [a1,a2,a3,a4], and we will generate tensorized
# polynomials x1^a1*x2^a2*x3^a3*x4^a4.

# Y ~ (X1+X2+X3+X4)^4
interactions = [x for x in ot.Tuples([2]*dim).generate()]
# Remove X1*X2*X3*X4 to obtain Y ~ (X1+X2+X3+X4)^3
interactions.pop(interactions.index([1]*dim))
for i in xrange(dim):
  indices = [0]*dim
  indices[i] = 2
  # Y ~ I(Xi)^2
  interactions.append(indices[:])
  # Y ~ I(Xi)^3
  indices[i] = 3
  interactions.append(indices[:])

basis = ot.Basis([factory.build(enumerateFunction.inverse(indices)) for indices in interactions])
################################################################################################

i_min = [interactions.index([0,0,0,0])]
#
# - The Combinations generator, which allows one to generate all the subsets of size :math:`k` of :math:`\{0,\dots,n-1\}`
#
#   The total number of generated points is :math:`N=\dfrac{n!}{k!(n-k)!}`.
#

# %%
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
import math as m
ot.Log.Show(ot.Log.NONE)

# %%
# Tuples
# ------
experiment = ot.Tuples([2, 3, 5])
print(experiment.generate())

# %%
# K-permutations
# --------------
experiment = ot.KPermutations(3, 4)
print(experiment.generate())

# %%
# Combinations
# ------------
experiment = ot.Combinations(4, 6)
print(experiment.generate())
Ejemplo n.º 7
0
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

generators = [
    ot.Tuples([4, 6, 9]),
    ot.KPermutations(4, 6),
    ot.Combinations(4, 6)
]

for generator in generators:
    print('generator:', generator)
    subsets = generator.generate()
    print('subset:', subsets)
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

generators = [
    ot.Tuples([4, 6, 9]), ot.KPermutations(4, 6), ot.Combinations(4, 6)]

for generator in generators:
    print('generator:', generator)
    subsets = generator.generate()
    print('subset:', subsets)