Ejemplo n.º 1
0
    def unsqueeze_num_directions(graph: Graph, match: dict):
        """ Assuming considered LSTM/GRU/RNN node should has num_directions in output shape and add Unsqueeze
            to match it.
        """

        rnn_layer = match['rnn_layer']
        rnn_layer_name = rnn_layer.soft_get('name', rnn_layer.id)
        # num_directions is at 1st position in output shape, and in 0st position in hidden and cell states
        # please refer to docs in this transform

        direction_dim = [1, 0, 0]  # index of dimension with direction index
        for i in rnn_layer.out_nodes():
            old_data_node = rnn_layer.out_node(i)
            old_shape = old_data_node.shape.copy()
            new_shape = shape_delete(old_shape, direction_dim[i])

            data = Op._create_data_node(graph, name=rnn_layer.name + '/Out/{}/'.format(i), attrs={'shape': new_shape})
            graph.remove_edge(rnn_layer.id, old_data_node.id)
            graph.add_edge(rnn_layer.id, data.id, key=0, out=i)

            unsqueeze = Unsqueeze(graph, dict())

            unsqueeze_dim_data = Const(graph, {'name': rnn_layer.name + '/UnsqueezeNumDirections/{}/Dim'.format(i),
                                               'value': int64_array([direction_dim[i]])}).create_node_with_data()

            unsqueeze.create_node_with_data([data, unsqueeze_dim_data],
                                            dict(name=rnn_layer_name + '/UnsqueezeNumDirections/{}'.format(i)),
                                            data_nodes=[old_data_node])
Ejemplo n.º 2
0
 def split_helper(node: Node, index: int, direction: str, axis: int = 0):
     return Op._create_data_node(
         node.graph,
         name=node.name + '/SplittedBiLSTM/{}/'.format(direction),
         attrs={'value': np.take(node.value, [index], axis),
                'shape': shape_array(np.take(node.value, [index], axis).shape)}
     )
Ejemplo n.º 3
0
    def add_output_reshape(graph: Graph, match: dict):
        """
        Since MXNet Y output shape is [batch_size, seq_len, hidden_size * num_directions] we need to add reshape
        from above common format [batch_size, num_directions, seq_len, hidden_size] to MXNet format.
        """
        lstm = match['rnn_layer']
        input = match['input']
        if not lstm.has_num_directions:
            return
        old_data_node = lstm.out_node(0)
        num_directions = 2 if lstm.direction in ['bidirectional'] else 1
        mxnet_shape = lstm.out_node(0).shape.copy()

        if lstm.batch_dim == 0:
            mo_shape = shape_array([
                input.shape[lstm.batch_dim], input.shape[lstm.sequence_dim],
                lstm.hidden_size
            ])
        else:
            mo_shape = shape_array([
                input.shape[lstm.sequence_dim], input.shape[lstm.batch_dim],
                lstm.hidden_size
            ])

        if lstm.has_num_directions:
            mo_shape = shape_insert(mo_shape, 1, np.int64(num_directions))

        lstm_name = lstm.soft_get('name', lstm.id)

        new_data = Op._create_data_node(graph,
                                        name=lstm_name +
                                        '/Data/Reshape_mxnet/',
                                        attrs={'shape': mo_shape})
        graph.remove_edge(lstm.id, old_data_node.id)
        graph.add_edge(lstm.id, new_data.id, key=0, out=0)

        # Add Transpose
        permute_order = Const(
            graph, {
                'name': lstm_name + '/Transpose_mxnet_order',
                'value': int64_array([0, 2, 1, 3])
            }).create_node_with_data()
        permute_data = Transpose(graph, {
            'name': lstm_name + '/Transpose_mxnet/'
        }).create_node_with_data([new_data, permute_order])

        # Add Reshape
        reshape = Reshape(graph, {'name': lstm_name + '/Reshape_mxnet/'})
        reshape_dim_data = Const(
            graph, {
                'name': lstm_name + '/Reshape_mxnet_dim',
                'value': int64_array(unmask_shape(mxnet_shape))
            }).create_node_with_data()

        reshape.create_node_with_data([permute_data, reshape_dim_data],
                                      dict(),
                                      data_nodes=[old_data_node])
Ejemplo n.º 4
0
    def infer(node: Node):
        # there are limitations coming from ONNX LSTM definition and normalization rules
        assert len(node.in_nodes()) >= 3  # X, W and R
        assert len(node.in_nodes()) <= 7
        assert len(node.out_nodes()) <= 3
        assert node.batch_dim <= 1
        assert node.sequence_dim <= 1
        assert node.batch_dim != node.sequence_dim

        assert node.direction in ['forward', 'reverse', 'bidirectional']

        if node.blobs_wrb:
            mark_input_bins(node, ['W', 'R', 'B'])
        else:
            mark_input_bins(node)
        input_shape = node.in_node(0).shape
        assert len(input_shape) == 3

        for port in [2, 3]:
            if port in node.in_nodes() and len(node.in_node(port).in_nodes()) > 0 and \
               'zero_shapes' in node.in_node(port).in_node():
                for i in node.in_node(port).in_node().zero_shapes:
                    if node.in_node(port).shape[i] != input_shape[i]:
                        node.in_node(port).value = np.repeat(
                            node.in_node(port).value, input_shape[i], axis=i)
                        node.in_node(port).shape[i] = input_shape[i]

        out_shape = shape_array([
            input_shape[node.sequence_dim], input_shape[node.batch_dim],
            node.hidden_size
        ])
        assert not node.has_num_directions or node.sequence_dim == 0, \
            'If has_num_directions == True, then node.sequence_dim should be equal 0, but it is {}'.format(
                node.sequence_dim)
        num_directions = 2 if node.direction in ['bidirectional'] else 1
        num_layers = node.num_layers
        if node.has_num_directions:
            # insert extra dimension to output shape for num_directions
            out_shape = shape_insert(out_shape, 1, np.int64(num_directions))
        node.out_node(0).shape = out_shape
        # extra outputs for hidden/cell states
        state_size = shape_array([input_shape[1], node.hidden_size])
        if node.has_num_directions:
            state_size = shape_insert(state_size, 0,
                                      num_directions * num_layers)
        for i in [1, 2]:
            if i not in node.out_nodes():
                data_node = Op._create_data_node(node.graph,
                                                 name=node.node +
                                                 '/ExtraOutput/' + str(i),
                                                 attrs={'executable': True})
                node.graph.add_edge(node.id, data_node.id, key=0, out=i)
                add_opoutput(node.graph, data_node.id, 0, False)
            else:
                data_node = node.out_node(i)
            data_node.shape = state_size.copy()
Ejemplo n.º 5
0
 def split_helper(node, index: int, direction: str):
     return Op._create_data_node(node.graph,
                                 name=node.name +
                                 '/SplittedBiLSTM/{}/'.format(direction),
                                 attrs={
                                     'value':
                                     node.value[index],
                                     'shape':
                                     int64_array(node.value[index].shape)
                                 })
Ejemplo n.º 6
0
    def split_data(self, data: Node):
        """ Helper. Split data node into two part along 0 axis """
        assert len(data.shape) == 3
        assert data.shape[0] == 2

        output_data = [Op._create_data_node(data.graph,
                                            name=data.name + '/SplittedBiLSTM/{}'.format(['forward', 'reverse'][i])) for
                       i in [0, 1]]
        split_op = Split(data.graph, dict(name=data.name + '/DecomposedBiLSTM_0', num_splits=2))
        axis_const = Const(data.graph, {'name': data.name + '/DecomposedBiLSTM_0' + '/Split_axis',
                                        'value': np.int64(0)}).create_node_with_data()
        return split_op.create_node_with_data([data, axis_const], data_nodes=output_data)
Ejemplo n.º 7
0
    def find_and_replace_pattern(self, graph: Graph):
        # Iterate over all data nodes and find all with >= 1 consumers
        for input_data in list(graph.get_data_nodes()):
            # We don't use constant data nodes
            if input_data.value is not None:
                continue

            if input_data.shape is None:
                continue
            input_shape = shape_array(input_data.shape)

            # Get all unique StridedSlice consumers
            out_nodes = [node for node in input_data.out_nodes() if node.op == 'StridedSlice' and
                         node.in_node(0).id == input_data.id]

            if len(out_nodes) <= 1:
                continue

            valid_for_replacement = True
            for n in out_nodes:
                if any(not isinstance(s, slice) for s in n.slices):
                    # this is a slice with dynamic dimension. Such operation is not valid for replacement
                    valid_for_replacement = False
            if not valid_for_replacement:
                continue

            sorted_out_nodes = sorted(out_nodes, key=lambda n: list(n.slices))
            out_nodes = unique_by(sorted_out_nodes, strided_slices_equality)

            for node in out_nodes:
                if len(node.slices) != len(out_nodes[0].slices):
                    valid_for_replacement = False

            # Detect dimension for splitting
            split_channel_dim = None
            for dim_id, s in enumerate(out_nodes[0].slices):
                l, r, stride = s.start, s.stop, s.step
                # if both l and r are None then the dimension is not sliced
                if (l != 0 or r != input_shape[dim_id]) and (l is not None or r is not None):
                    if split_channel_dim is None:
                        split_channel_dim = dim_id
                    else:
                        valid_for_replacement = False

            if split_channel_dim is None:
                valid_for_replacement = False

            # split_dims contains tuples with split range and output data node
            split_dims = []
            for out_id, node in enumerate(out_nodes):
                # Check that StridedSlice op has stride eq 1 and splits only feature channel
                for id, s in enumerate(node.slices):
                    l, r, stride = s.start, s.stop, s.step
                    # We don't support StridedSlice with stride != 1
                    if stride != 1:
                        valid_for_replacement = False
                    if id == split_channel_dim:
                        split_dims.append((s.start, s.stop, node.out_node()))

            if not valid_for_replacement:
                continue

            # Check feature split intersection
            final_data_nodes_list = []
            sorted_split_dims = sorted(split_dims, key=lambda item: (item[0], item[1]))

            # check if we have similar StridedSlice operations with different outputs
            prev_sd = sorted_split_dims[0]
            to_remove = []
            for i in range(1, len(sorted_split_dims)):
                if sorted_split_dims[i][0] == prev_sd[0] and sorted_split_dims[i][1] == prev_sd[1] and sorted_split_dims[i][2].name != prev_sd[2].name:
                    cur_node = sorted_split_dims[i][2]
                    for out in cur_node.out_nodes():
                        attrs = deepcopy(graph.get_edge_data(cur_node.id, out.id)[0])
                        graph.remove_edge(cur_node.id, out.id)
                        graph.add_edge(prev_sd[2].id, out.id, **attrs)
                    to_remove.append(i)

            for ind in reversed(to_remove):
                sorted_split_dims.pop(ind)

            size_splits = []
            prev_r = 0
            for l, r, out in sorted_split_dims:
                # Split dims shouldn't intersect
                if l < prev_r:
                    valid_for_replacement = False
                prev_r = r

            if prev_r > input_shape[split_channel_dim]:
                valid_for_replacement = False

            if not valid_for_replacement:
                continue

            prev_r = 0
            for l, r, out in sorted_split_dims:
                # Save missing tensor part
                if l > prev_r:
                    shape = mo_array(input_shape)
                    size_splits.append(l - prev_r)
                    shape[split_channel_dim] = l - prev_r
                    data_node = Op._create_data_node(graph, 'fake_data_'+out_nodes[0].name, {'shape': shape})
                    add_opoutput(graph, data_node.id, 0, False, keep_output_port=True)
                    final_data_nodes_list.append(data_node)

                prev_r = r
                size_splits.append(r - l)
                final_data_nodes_list.append(out)

            if prev_r < input_shape[split_channel_dim]:
                # Add last part of tensor
                shape = input_shape.copy()
                shape[split_channel_dim] = input_shape[split_channel_dim] - prev_r
                size_splits.append(input_shape[split_channel_dim] - prev_r)
                data_node = Op._create_data_node(graph, 'fake_data_'+out_nodes[0].name, {'shape': shape})
                add_opoutput(graph, data_node.id, 0, False, keep_output_port=True)
                final_data_nodes_list.append(data_node)

            for node in out_nodes:
                if not np.all([x == 0 for x in node.shrink_axis_mask]):
                    out_node = node.out_node()
                    if np.any(node['shrink_axis_mask']):
                        self.add_squeeze_for_shrink(graph, node)
                    if np.any(node['new_axis_mask']):
                        self.add_unsqueeze_for_new(graph, node)

                    for i in range(len(final_data_nodes_list)):
                        if final_data_nodes_list[i].name == out_node.name:
                            final_data_nodes_list[i] = node.out_node()
                            break

            # Insert Split layer and remove old StridedSlice layers
            # 1. Remove connections from input_data to StridedSlice ops
            out_data_nodes = []
            name_for_future_split = out_nodes[0].name
            for node in out_nodes:
                out_data_nodes.append(node.out_node())
                graph.remove_edge(input_data.id, node.id)
                graph.remove_edge(node.id, node.out_node().id)
                graph.remove_node(node.id)
                log.debug("Removed: {}".format(node.id))

            # 2. Create Split layer and reorder outputs
            name = name_for_future_split + "/Split"
            axis_const = Const(graph, {'value': int64_array(split_channel_dim),
                                       'name': name + '/Axis'}).create_node_with_data()
            size_splits_const = Const(graph, {'value': int64_array(size_splits),
                                              'name': name + '/Sizes'}).create_node_with_data()
            split = VariadicSplit(graph, dict(name=name, out_ports_count=len(size_splits)))

            split.create_node_with_data(inputs=[input_data, axis_const, size_splits_const],
                                        data_nodes=final_data_nodes_list)
Ejemplo n.º 8
0
    def split_bidirectional(self,
                            bidirectional_cell: Node,
                            new_init_hiddens: list,
                            new_init_cells: list,
                            splitted_W: tuple,
                            splitted_R: tuple,
                            splitted_B: tuple):
        """
            Split one bidirectional RNNSequence node into 2 one-directional RNNSequence nodes.

            All input data nodes should be already prepared; they are
            have 2 in the num_dir dimension.
        """
        all_outputs = []
        for i in [0, 1]:
            direction = ['forward', 'reverse'][i]
            op = self.get_new_cell(bidirectional_cell, direction)

            output_data = Op._create_data_node(
                bidirectional_cell.graph,
                name=bidirectional_cell.out_node(0).name + '/Split/' + str(i),
                attrs={'shape': bidirectional_cell.out_node(0).shape.copy()}
            )

            assert output_data.shape[1] == 2
            output_data.shape[1] = 1

            output_hidden = Op._create_data_node(
                bidirectional_cell.graph,
                name=bidirectional_cell.out_node(1).name + '/Split/' + str(i),
                attrs={'shape': bidirectional_cell.out_node(1).shape.copy()}
            )

            assert output_hidden.shape[0] == 2
            output_hidden.shape[0] = 1

            data_nodes = [
                output_data,
                output_hidden,
            ]

            if bidirectional_cell.op == 'LSTM':
                output_cell = Op._create_data_node(
                    bidirectional_cell.graph,
                    name=bidirectional_cell.out_node(2).name + '/Split/' + str(i),
                    attrs={'shape': bidirectional_cell.out_node(2).shape.copy()}
                )

                assert output_cell.shape[0] == 2
                output_cell.shape[0] = 1

                data_nodes.append(output_cell)

            all_outputs.append(
                op.create_node_with_data(
                    inputs=[
                        bidirectional_cell.in_node(0),
                        splitted_W[i],
                        splitted_R[i],
                        splitted_B[i],
                        None,
                        new_init_hiddens[i],
                        new_init_cells[i] if bidirectional_cell.op == 'LSTM' else None,
                    ],
                    data_nodes=data_nodes
                )
            )
        return all_outputs
Ejemplo n.º 9
0
def rnn_infer(node: Node, out_ports=None):
    """
    General infer function for RNN, GRU, LSTM layers.
    Assume that 0-port input of node is input data for recurrent layer and node have attrs:
    hidden_size,
    """
    if out_ports is None:
        out_ports = []

    # 1. Necessary checks (from ONNX specification)
    assert node.batch_dim <= 1
    assert node.sequence_dim <= 1
    assert node.batch_dim != node.sequence_dim
    assert node.direction in ['forward', 'reverse', 'bidirectional']

    if node.blobs_wrb:
        mark_input_bins(node, ['W', 'R', 'B'])
    else:
        mark_input_bins(node)

    # 2. Output shape calculations
    input_shape = node.in_node(0).shape
    assert len(input_shape) == 3

    # Reshape input nodes
    for port in [2, 3]:
        if port in node.in_nodes() and len(node.in_node(port).in_nodes()) > 0 and \
                'zero_shapes' in node.in_node(port).in_node():
            for i in node.in_node(port).in_node().zero_shapes:
                if node.in_node(port).shape[i] != input_shape[i]:
                    node.in_node(port).value = np.repeat(
                        node.in_node(port).value, input_shape[i], axis=i)
                    node.in_node(port).shape[i] = input_shape[i]

    out_shape = [
        input_shape[node.sequence_dim], input_shape[node.batch_dim],
        node.hidden_size
    ]

    if node.batch_dim == 0:
        out_shape = [
            input_shape[node.batch_dim], input_shape[node.sequence_dim],
            node.hidden_size
        ]

    num_directions = 2 if node.direction in ['bidirectional'] else 1
    if node.has_num_directions:
        if node.format == 'mxnet' and node.normalized is False:
            # In MXNet RNN layer return output with shape [seq_len, batch_size, hidden_size * num_directions]
            out_shape[-1] *= num_directions
        else:
            # ONNX-like, insert extra dimension to output shape for num_directions
            out_shape = shape_insert(out_shape, 1, np.int64(num_directions))

    # 0 output is required creating it if doesn't exist
    if 0 not in node.out_nodes():
        data_node = Op._create_data_node(node.graph,
                                         name=node.node +
                                         '/ExtraOutput/{}'.format(0),
                                         attrs={'executable': True})
        if 0 not in node.out_ports():
            node.add_output_port(0)
        node.graph.add_edge(node.id, data_node.id, key=0, out=0)
        add_opoutput(node.graph, data_node.id, 0, False)
    node.out_port(0).data.set_shape(out_shape)

    # 3. Extra outputs for hidden/cell states shape calculations (optional)
    state_size = [input_shape[node.batch_dim], node.hidden_size]
    if node.has_num_directions:
        state_size = shape_insert(state_size, 0, num_directions)

    if node.multilayers:
        # For multilayer case state sizes from every layer will be concatenated by last axis
        num_layers = node.num_layers
        state_size[-1] *= num_layers

    for i in out_ports:
        # If node hasn't consumers for hidden/cells state -> create them
        if i not in node.out_nodes():
            data_node = Op._create_data_node(node.graph,
                                             name=node.node + '/ExtraOutput/' +
                                             str(i),
                                             attrs={'executable': True})
            if i not in node.out_ports():
                node.add_output_port(i)
            node.graph.add_edge(node.id, data_node.id, key=0, out=i)
            add_opoutput(node.graph, data_node.id, 0, False)
        else:
            data_node = node.out_node(i)
        data_node.shape = shape_array(state_size)
    def replace_pattern(self, graph: Graph, match: dict):
        lstm = match['lstm']

        # Build TensorIterator body first
        body = Graph(name=lstm.name + '/sub_graph')
        body.graph = graph.graph

        # 1. Input squeeze Reshape
        inputs = [Op._create_data_node(body, lstm.name + '/inport/' + str(inp),
                                       {'shape': lstm.in_node(inp).shape.copy(),
                                        'value': lstm.in_node(inp).value.copy()
                                        if lstm.in_node(inp).value is not None and inp in [1, 2] else None})
                  for inp in [0, 4, 5, 1, 2]]  # X, WR, B, h_init, c_init

        inputs[0].shape[lstm.sequence_dim] = 1
        input_squeeze = Squeeze(body, dict(name=lstm.name + '/input_squeeze', internal_layer_id=0))
        squeeze_dim_data = Const(body, {'name': lstm.name + '/input_squeeze_dim',
                                        'value': [lstm.sequence_dim]}).create_node_with_data()
        inputs[0] = input_squeeze.create_node_with_data([inputs[0], squeeze_dim_data],
                                                        edge_attrs=[{'internal_port_id': 0}])

        # 2. Output unsqueeze Reshape
        outputs = [Op._create_data_node(body, lstm.name + '/outport/' + str(out),
                                        {'shape': lstm.out_node(out).shape.copy() if out in lstm.out_nodes()
                                        else lstm.in_node(4).shape.copy()}) for out in [0, 1]]
        for out in outputs:
            add_opoutput(body, out.id, 0, False)

        outputs[0].shape = shape_delete(outputs[0].shape, lstm.sequence_dim)
        output_unsqueeze = Unsqueeze(body, dict(name=lstm.name + 'output_unsqueeze', internal_layer_id=2))
        unsqueeze_dim_data = Const(body, {'name': lstm.name + '/output_unsqueeze_dim',
                                          'value': [lstm.sequence_dim]}).create_node_with_data()

        # 3. LSTMCell
        lstm_cell_op = LSTMCell(body, dict(hidden_size=lstm.hidden_size,
                                           activations=lstm.activations,
                                           activation_alpha=lstm.activation_alpha,
                                           activation_beta=lstm.activation_beta,
                                           clip=lstm.clip,
                                           input_forget=lstm.input_forget,
                                           name=lstm.name + '/LSTMCell',
                                           internal_layer_id=1))
        lstm_cell_node = lstm_cell_op.create_node_with_data(inputs, data_nodes=outputs,
                                                            edge_attrs=[{}, {'internal_port_id': 1},
                                                                        {'internal_port_id': 2}, {'bin': 'weights'},
                                                                        {'bin': 'biases'}])
        lstm_cell_node[0].in_node().out_edge(0)['internal_port_id'] = 4
        lstm_cell_node[0].in_node().out_edge(1)['internal_port_id'] = 5
        lstm_cell_node[0] = output_unsqueeze.create_node_with_data([lstm_cell_node[0], unsqueeze_dim_data])
        lstm_cell_node[0].in_node().out_edge(0)['internal_port_id'] = 3
        add_opoutput(body, lstm_cell_node[0].id, 0, False)

        # 4. TensorIterator layer creating
        assert lstm.direction in ['forward', 'reverse']
        if lstm.direction == 'forward':
            stride = 1
            start = None
            end = None
        else:
            assert lstm.direction == 'reverse'
            stride = -1
            start = -1
            end = 0

        output_port_map = [{
            'external_port_id': 3,
            'internal_layer_id': 2,
            'internal_port_id': 3,

            'axis': lstm.sequence_dim,
            'stride': stride,
            'start': start,
            'end': end,
            'part_size': 1,
        }]

        # Adding h_state, c_state to outputs
        if len(lstm.out_nodes()) == 3:
            output_port_map.extend([{
                'external_port_id': 4,
                'internal_layer_id': 1,
                'internal_port_id': 4,
            }, {
                'external_port_id': 5,
                'internal_layer_id': 1,
                'internal_port_id': 5,
            }])

        ti_op = TensorIterator(graph, {
            'name': lstm.name + '/TensorIterator',
            'body': body,
            'in_ports_count': 3,
            'out_ports_count': len(lstm.out_nodes()),

            'input_port_map': [
                {
                    'external_port_id': 0,
                    'internal_layer_id': 0,
                    'internal_port_id': 0,

                    'axis': lstm.sequence_dim,
                    'stride': stride,
                    'start': start,
                    'end': end,
                    'part_size': 1,
                },
                {
                    'external_port_id': 1,
                    'internal_layer_id': 1,
                    'internal_port_id': 1,
                },
                {
                    'external_port_id': 2,
                    'internal_layer_id': 1,
                    'internal_port_id': 2,
                },
            ],

            'output_port_map': output_port_map,

            'back_edges': [
                {
                    'from_layer': 1,
                    'from_port': 4,
                    'to_layer': 1,
                    'to_port': 1,
                },
                {
                    'from_layer': 1,
                    'from_port': 5,
                    'to_layer': 1,
                    'to_port': 2,
                },
            ]
        })

        assert sorted(lstm.out_nodes().keys()) == list(range(len(lstm.out_nodes()))), \
            "There are gaps in output ports of LSTMSequence operation. Node {}".format(lstm.id)

        outs = ti_op.create_node_with_data([lstm.in_node(i) for i in [0, 4, 5]],  # X, h_init, c_init
                                           data_nodes=[lstm.out_node(i) for i in range(len(lstm.out_nodes()))],
                                           edge_attrs=[{'external_port_id': 0}, {'external_port_id': 1},
                                                       {'external_port_id': 2}])

        if not isinstance(outs, list):
            outs = list([outs])

        graph.remove_node(lstm.id)
        outs[0].in_edge(0)['external_port_id'] = 3
        for i, out in enumerate(outs[1:]):
            external_port_id = 4 + i
            out.in_edge()['external_port_id'] = external_port_id

        ti = outs[0].in_node()
        TensorIterator.cover_body_input_data_nodes_with_parameter_ops(ti)
        TensorIterator.cover_body_constant_data_nodes_with_const_ops(ti)
        TensorIterator.normalize_internal_ids(ti)
Ejemplo n.º 11
0
    def replace_pattern(graph, match: dict):
        # Here we will found all parts of TI: condition, inputs/outputs, back edges, body and create TensorIterator Op
        # and make all checks needed for TensorIterator work
        cond_data = match['condition'].out_node(
            0) if not match['condition'].out_port(0).disconnected() else None
        time_data = match['condition'].out_node(1) if len(
            match['condition'].out_nodes()) >= 1 else None
        name = match['condition'].name

        back_edges = []
        inputs = []
        outputs = []

        if cond_data is not None:
            for node in cond_data.out_nodes():
                if node['kind'] == 'op' and node[
                        'op'] == 'TensorIteratorBackEdge':
                    back_edges.append(node.id)
                elif node['kind'] == 'op' and node[
                        'op'] == 'TensorIteratorInput':
                    inputs.append(node.id)
                elif node['kind'] == 'op' and node[
                        'op'] == 'TensorIteratorOutput':
                    outputs.append(node.id)

        if time_data is not None:
            for node in time_data.out_nodes():
                if node['kind'] == 'op' and node['op'] == 'TensorIteratorInput':
                    inputs.append(node.id)
                elif node['kind'] == 'op' and node[
                        'op'] == 'TensorIteratorOutput':
                    outputs.append(node.id)
                else:
                    # something goes wrong here
                    assert False
        condition = match['condition']
        tensor_sequence_length = condition.in_node(0)

        nodes_to_remove = [
            n.id
            for n in (condition, cond_data, time_data, tensor_sequence_length)
            if n is not None
        ]
        graph.remove_nodes_from(nodes_to_remove)

        body_nodes, extra_inputs = get_body(graph, inputs, outputs)

        if cond_data is not None:
            body_nodes = list(set(body_nodes) - set([cond_data]))

        inputs += extra_inputs

        assert all([node in graph.nodes() for node in body_nodes])

        inputs = [Node(graph, node) for node in inputs]
        outputs = [Node(graph, node) for node in outputs]
        back_edges = [Node(graph, node) for node in back_edges]

        external_inputs = [{
            'external_data_id':
            node.in_node(1 if node.has_valid('axis') else 0),
            'internal_data_id':
            node.out_node(0),
            'axis':
            node.axis,
            'start':
            node.start,
            'end':
            node.end,
            'stride':
            node.stride,
            'part_size':
            node.part_size
        } for node in inputs]

        external_outputs = [{
            'external_data_id':
            node.out_node(0),
            'internal_data_id':
            node.in_node(1 if node.has_valid('axis') else 0),
            'axis':
            node.axis,
            'start':
            node.start,
            'end':
            node.end,
            'stride':
            node.stride,
            'part_size':
            node.part_size
        } for node in outputs]

        back_edges_data = [{
            'from_data_id': node.in_node(1),
            'to_data_id': node.out_node(0),
            'init_data_id': node.in_node(0),
        } for node in back_edges]

        body = Graph(name='body')
        body.graph = graph.graph
        body.add_nodes_from([(node, graph.node[node]) for node in body_nodes])
        body.add_edges_from([
            (u, v, k, d) for u, v, k, d in graph.edges(data=True, keys=True)
            if u in body_nodes and v in body_nodes
        ])

        graph.remove_nodes_from(body_nodes + [match['condition'].id] +
                                [inp.id for inp in inputs] +
                                [out.id for out in outputs])
        internal_id_count = 0
        real_back_edges = []
        for edge in back_edges_data:
            assert edge['from_data_id'].id in body.nodes()
            assert edge['to_data_id'].id in body.nodes()
            assert edge['init_data_id'].id in body.nodes()
            edge['from_data_id'] = Node(body, edge['from_data_id'].id)
            edge['to_data_id'] = Node(body, edge['to_data_id'].id)
            edge['init_data_id'] = Node(body, edge['init_data_id'].id)
            add_opoutput(body, edge['from_data_id'].id, 0, False)

            # Assign/reuse ids for the back-edge start; it comes from from_data_id
            assert len(edge['from_data_id'].in_nodes()) == 1
            # layer id
            if not edge['from_data_id'].in_node().has_valid(
                    'internal_layer_id'):
                edge['from_data_id'].in_node(
                )['internal_layer_id'] = internal_id_count
                internal_id_count += 1
            edge['from_layer'] = edge['from_data_id'].in_node(
            )['internal_layer_id']

            # port id
            if 'internal_port_id' not in edge['from_data_id'].in_edge():
                edge['from_data_id'].in_edge(
                )['internal_port_id'] = internal_id_count
                internal_id_count += 1
            edge['from_port'] = edge['from_data_id'].in_edge(
            )['internal_port_id']

            # Look at all consumers for a data that ends a back-edge
            # For each such consumer, there will be a separate back-edge (and input)
            current_real_back_edges = []
            for _, consumer, key, edge_attrs in body.out_edges(
                    edge['to_data_id'].id, data=True, keys=True):

                real_edge = {}
                real_edge.update(
                    edge)  # all real back_edges have the same back-edge start

                consumer = Node(body, consumer)

                if real_edge['to_data_id'].in_node().has_valid(
                        'internal_layer_id'):
                    assert False
                    real_edge['to_data_id'].out_node()['internal_layer_id'] = \
                        real_edge['to_data_id'].in_node().internal_layer_id
                elif not consumer.has_valid('internal_layer_id'):
                    consumer['internal_layer_id'] = internal_id_count
                    internal_id_count += 1
                real_edge['to_layer'] = consumer['internal_layer_id']

                assert 'internal_port_id' not in edge_attrs
                assert len(real_edge['init_data_id'].out_edges()) == 1
                assert not 'internal_port_id' in real_edge[
                    'init_data_id'].out_edge()
                edge_attrs['internal_port_id'] = internal_id_count
                internal_id_count += 1
                real_edge['to_port'] = edge_attrs['internal_port_id']
                real_edge['consumer'] = consumer
                real_edge['consumer_key'] = key

                real_edge['attrs'] = deepcopy(edge_attrs)
                current_real_back_edges.append(real_edge)

            # connect initial data node with each consumer providing actual edge attributes
            body.add_edges_from([
                (real_edge['init_data_id'].id, real_edge['consumer'].id,
                 real_edge['consumer_key'], real_edge['attrs'])
                for real_edge in current_real_back_edges
            ])

            body.remove_nodes_from(
                [edge['to_data_id'].id, edge['to_data_id'].in_node().id])
            real_back_edges += current_real_back_edges

        real_external_inputs = []

        for ext_inp in external_inputs:
            assert ext_inp['external_data_id'].id not in body.nodes()
            assert ext_inp['internal_data_id'].id in body.nodes()
            ext_inp['internal_data_id'] = Node(body,
                                               ext_inp['internal_data_id'].id)

            if ext_inp['axis'] is not None:
                # Insert squeezing resize at input port that has partitioning
                shape = ext_inp['internal_data_id'].shape.copy()
                assert not ext_inp['internal_data_id'].has_valid('value')
                new_input_data = Op._create_data_node(
                    body,
                    ext_inp['internal_data_id'].name + '/UnsqueezedInput',
                    dict(shape=shape_insert(shape, ext_inp['axis'], 1)))

                reshape_op = Squeeze(
                    body,
                    dict(name=ext_inp['internal_data_id'].name +
                         '/InputSqueeze'))
                reshape_dim_data = Const(
                    body, {
                        'name':
                        ext_inp['internal_data_id'].name + '/ReshapeDim',
                        'value': ext_inp['axis']
                    }).create_node_with_data()
                reshape_op.create_node_with_data(
                    [new_input_data, reshape_dim_data],
                    data_nodes=[ext_inp['internal_data_id']])
                ext_inp['internal_data_id'] = new_input_data

            ext_inp['internal_data_id']['is_input'] = True
            assert len(ext_inp['internal_data_id'].in_nodes()) == 0
            ext_inp['external_port_id'] = internal_id_count
            internal_id_count += 1
            for _, consumer, edge_attrs in body.out_edges(
                    ext_inp['internal_data_id'].id, data=True):
                real_ext_inp = {}
                real_ext_inp.update(ext_inp)
                consumer = Node(body, consumer)
                if not consumer.has_valid('internal_layer_id'):
                    consumer['internal_layer_id'] = internal_id_count
                    internal_id_count += 1
                if not 'internal_port_id' in edge_attrs:
                    edge_attrs['internal_port_id'] = internal_id_count
                    internal_id_count += 1
                real_ext_inp['internal_layer_id'] = consumer[
                    'internal_layer_id']
                real_ext_inp['internal_port_id'] = edge_attrs[
                    'internal_port_id']
                real_external_inputs.append(real_ext_inp)

        for ext_out in external_outputs:
            assert ext_out['external_data_id'].id not in body.nodes()
            assert ext_out['internal_data_id'].id in body.nodes()
            ext_out['internal_data_id'] = Node(body,
                                               ext_out['internal_data_id'].id)

            if ext_out['axis'] is not None:
                # Insert unsqueezing resize at output port that has partitioning
                reshape_op = Unsqueeze(
                    body,
                    dict(name=ext_out['internal_data_id'].name +
                         '/OutputUnsqueeze'))
                reshape_dim_data = Const(
                    body, {
                        'name':
                        ext_out['internal_data_id'].name + '/ReshapeDim',
                        'value': ext_out['axis']
                    }).create_node_with_data()
                ext_out['internal_data_id'] = reshape_op.create_node_with_data(
                    [ext_out['internal_data_id'], reshape_dim_data])

            # TODO: add here working with simple outputs

            if not any([
                    out_node.soft_get('op', None) == 'Result'
                    for out_node in ext_out['internal_data_id'].out_nodes()
            ]):
                add_opoutput(body, ext_out['internal_data_id'].id, 0, False)

            # assert len(ext_out['internal_data_id'].out_nodes()) == 0
            assert len(ext_out['internal_data_id'].in_nodes()) == 1
            if not 'internal_layer_id' in ext_out['internal_data_id'].in_node(
            ):
                ext_out['internal_data_id'].in_node(
                )['internal_layer_id'] = internal_id_count
                internal_id_count += 1
            if not 'internal_port_id' in ext_out['internal_data_id'].in_edge():
                ext_out['internal_data_id'].in_edge(
                )['internal_port_id'] = internal_id_count
                internal_id_count += 1
            ext_out['internal_layer_id'] = ext_out['internal_data_id'].in_node(
            )['internal_layer_id']
            ext_out['internal_port_id'] = ext_out['internal_data_id'].in_edge(
            )['internal_port_id']
            ext_out['external_port_id'] = internal_id_count
            internal_id_count += 1

        # create TensorIterator layer with pre-computed components
        ti_op = TensorIterator(
            graph, {
                'name':
                name + '/TensorIterator',
                'body':
                body,
                'in_ports_count':
                len(external_inputs),
                'out_ports_count':
                len(external_outputs),
                'input_port_map': [{
                    field: external_input[field]
                    for field in [
                        'external_port_id', 'internal_layer_id',
                        'internal_port_id', 'axis', 'stride', 'part_size',
                        'start', 'end'
                    ]
                } for external_input in real_external_inputs],
                'output_port_map': [{
                    field: external_output[field]
                    for field in [
                        'external_port_id', 'internal_layer_id',
                        'internal_port_id', 'axis', 'stride', 'part_size',
                        'start', 'end'
                    ]
                } for external_output in external_outputs],
                'back_edges': [{
                    field: edge[field]
                    for field in
                    ['from_layer', 'from_port', 'to_layer', 'to_port']
                } for edge in real_back_edges],
            })

        ti_outs = ti_op.create_node_with_data(
            inputs=[inp['external_data_id'] for inp in external_inputs],
            edge_attrs=[{
                'external_port_id': inp['external_port_id']
            } for inp in external_inputs],
            data_nodes=[out['external_data_id'] for out in external_outputs])

        if not isinstance(ti_outs, list):
            ti_outs = [ti_outs]

        for i, out in enumerate(ti_outs):
            out.in_edge(
            )['external_port_id'] = external_outputs[i]['external_port_id']

        ti = ti_outs[0].in_node()
        TensorIterator.cover_body_input_data_nodes_with_parameter_ops(ti)
        TensorIterator.cover_body_constant_data_nodes_with_const_ops(ti)
        TensorIterator.normalize_internal_ids(ti)
Ejemplo n.º 12
0
    def split_multilayer_cell(self, graph: Graph, match: dict):
        """
        Split one multilayer type=RNNSequence cell to num_layers consecutive cells.
        All parameters splits to parts for new num_layers cells.
        """
        input = match['input']
        rnn_layer = match['rnn_layer']
        params = match['params'].value.copy()

        have_hidden = False
        if 2 in rnn_layer.in_nodes():
            hidden_state_value = rnn_layer.in_node(2).value
            have_hidden = True

        have_cell = False
        if 3 in rnn_layer.in_nodes():
            cell_state_value = rnn_layer.in_node(3).value
            have_cell = True

        direction = 2 if rnn_layer.has_num_directions else 1
        num_layers = rnn_layer.num_layers
        input_size = input.shape[2]
        bsize = (2 * rnn_layer.hidden_size * direction *
                 num_layers) * rnn_layer.multiplier

        size = rnn_layer.hidden_size * direction * rnn_layer.multiplier
        first_layer_params_size = (input_size + rnn_layer.hidden_size +
                                   2) * size
        other_layer_params_size = (rnn_layer.hidden_size * direction +
                                   rnn_layer.hidden_size + 2) * size
        assert params.size == (first_layer_params_size +
                               (num_layers - 1) * other_layer_params_size)

        input_node = input
        params_layer_size_count = 0
        output_states = [[], []]

        param_w = params[0:len(params) - bsize]
        param_b = params[len(params) - bsize:]
        layer_bsize = (2 * rnn_layer.hidden_size *
                       direction) * rnn_layer.multiplier

        for l in range(num_layers):
            params_layer_size = first_layer_params_size if l == 0 else other_layer_params_size

            layer_params_w = param_w[
                params_layer_size_count:params_layer_size_count +
                (params_layer_size - layer_bsize)].copy()
            layer_params_b = param_b[layer_bsize * l:layer_bsize * l +
                                     layer_bsize].copy()
            layer_params = np.concatenate((layer_params_w, layer_params_b),
                                          axis=0)
            params_layer_size_count = params_layer_size_count + params_layer_size - layer_bsize

            op = self.get_new_cell(rnn_layer, l)
            name = str(rnn_layer.soft_get('name', rnn_layer.id))
            params_value_node = Const(
                rnn_layer.graph,
                dict(name=name + '/LayerSplittedParamsLSTM/{}/'.format(l),
                     value=layer_params)).create_node_with_data()

            if have_hidden:
                layer_hidden_state = hidden_state_value[l * direction:l *
                                                        direction + direction]
                hidden_state_value_node = Const(
                    rnn_layer.graph,
                    dict(name=name + '/LayerSplittedHiddenState/{}/'.format(l),
                         value=layer_hidden_state)).create_node_with_data()
            else:
                hidden_state_value_node = None

            if have_cell:
                layer_cell_state = cell_state_value[l *
                                                    direction:l * direction +
                                                    direction]
                cell_state_value_node = Const(
                    rnn_layer.graph,
                    dict(name=name + '/LayerSplittedCellState/{}/'.format(l),
                         value=layer_cell_state)).create_node_with_data()
            else:
                cell_state_value_node = None

            if l < num_layers - 1:
                output_data = Op._create_data_node(
                    rnn_layer.graph,
                    name=rnn_layer.out_node(0).name + '/LayerSplit/' + str(l),
                    attrs={'shape': rnn_layer.out_node(0).shape.copy()})
            else:
                output_data = rnn_layer.out_node(0)

            # Output nodes creating:
            state_size = int64_array(
                [input.shape[rnn_layer.batch_dim], rnn_layer.hidden_size])
            if rnn_layer.has_num_directions:
                state_size = shape_insert(state_size, 0, direction)

            output_hidden = Op._create_data_node(
                rnn_layer.graph,
                name=rnn_layer.out_node(1).name + '/LayerSplit/' + str(l),
                attrs={'shape': mo_array(state_size)})

            current_data_nodes = [output_data, output_hidden]

            if rnn_layer.op == 'LSTM':
                output_cell = Op._create_data_node(
                    rnn_layer.graph,
                    name=rnn_layer.out_node(2).name + '/LayerSplit/' + str(l),
                    attrs={'shape': mo_array(state_size)})
                current_data_nodes.append(output_cell)

            data_nodes = op.create_node_with_data(
                inputs=[
                    input_node, params_value_node, hidden_state_value_node,
                    cell_state_value_node
                ],
                data_nodes=current_data_nodes,
            )

            input_node = data_nodes[0]
            output_states[0].append(data_nodes[1])

            if rnn_layer.op == 'LSTM':
                output_states[1].append(data_nodes[2])

        return output_states
    def replace_pattern(self, graph: Graph, match: dict):
        if match['rnn_layer']['op'] == 'LSTM':
            return

        rnn_layer = match['rnn_layer']

        # Build TensorIterator body first
        body = Graph(name=rnn_layer.name + '/sub_graph')
        body.graph = graph.graph

        # 1. Input squeeze Reshape
        inputs = [
            Op._create_data_node(
                body, rnn_layer.name + '/inport/' + str(inp), {
                    'shape':
                    rnn_layer.in_node(inp).shape.copy(),
                    'value':
                    rnn_layer.in_node(inp).value.copy()
                    if rnn_layer.in_node(inp).value is not None
                    and inp in [1, 2] else None
                }) for inp in [0, 4, 1, 2]
        ]  # X, h_init, WR, B

        inputs[0].shape[rnn_layer.sequence_dim] = 1
        input_squeeze = Squeeze(
            body,
            dict(name=rnn_layer.name + '/input_squeeze', internal_layer_id=0))
        input_squeeze_dim = Const(
            body,
            dict(name=rnn_layer.name + '/input_squeeze_dim',
                 value=rnn_layer.sequence_dim)).create_node_with_data()
        inputs[0] = input_squeeze.create_node_with_data(
            [inputs[0], input_squeeze_dim],
            edge_attrs=[{
                'internal_port_id': 0
            }])

        # 2. Output unsqueeze Reshape
        outputs = [
            Op._create_data_node(
                body, rnn_layer.name + '/outport/' + str(out), {
                    'shape':
                    rnn_layer.out_node(out).shape.copy()
                    if out in rnn_layer.out_nodes() else None
                }) for out in [0]
        ]
        for out in outputs:
            add_opoutput(body, out.id, 0, False)

        outputs[0].shape = shape_delete(outputs[0].shape,
                                        rnn_layer.sequence_dim)
        output_unsqueeze_dim = Const(
            body,
            dict(name=rnn_layer.name + '/output_unsqueeze_dim',
                 value=rnn_layer.sequence_dim)).create_node_with_data()
        output_unsqueeze = Unsqueeze(
            body,
            dict(name=rnn_layer.name + '/output_unsqueeze/',
                 internal_layer_id=2))

        additional_attrs = dict(activations=rnn_layer.activations,
                                activation_alpha=rnn_layer.activation_alpha,
                                activation_beta=rnn_layer.activation_beta,
                                clip=rnn_layer.clip)
        if rnn_layer.op == 'GRU':
            additional_attrs[
                'linear_before_reset'] = rnn_layer.linear_before_reset

        # 3. ***Cell
        rnn_cell_op = self.get_rnn_cell(rnn_layer['op'])(
            body,
            dict(hidden_size=rnn_layer.hidden_size,
                 name=rnn_layer.name + '/{}Cell'.format(rnn_layer.op),
                 **additional_attrs,
                 internal_layer_id=1))

        gru_cell = rnn_cell_op.create_node_with_data(inputs,
                                                     data_nodes=outputs,
                                                     edge_attrs=[{}, {
                                                         'internal_port_id':
                                                         1
                                                     }, {
                                                         'internal_port_id':
                                                         2
                                                     }, {
                                                         'bin':
                                                         'weights'
                                                     }, {
                                                         'bin':
                                                         'biases'
                                                     }])

        # internal ports for outputs of cell
        gru_cell.in_node().out_edge(0)['internal_port_id'] = 4  # h_state

        gru_cell = output_unsqueeze.create_node_with_data(
            [gru_cell, output_unsqueeze_dim])
        gru_cell.in_node().out_edge(0)['internal_port_id'] = 3
        add_opoutput(body, gru_cell.id, 0, False)

        # 4. TensorIterator layer creating
        assert rnn_layer.direction in ['forward', 'reverse']
        if rnn_layer.direction == 'forward':
            stride = 1
            start = None
            end = None
        else:
            assert rnn_layer.direction == 'reverse'
            stride = -1
            start = -1
            end = 0

        # stacked h_state
        output_port_map = [{
            'external_port_id': 3,
            'internal_layer_id': 2,
            'internal_port_id': 3,
            'axis': rnn_layer.sequence_dim,
            'stride': stride,
            'start': start,
            'end': end,
            'part_size': 1,
        }]

        # Adding last h_state to outputs
        if len(rnn_layer.out_nodes()) == 2:
            output_port_map.extend([{
                'external_port_id': 4,
                'internal_layer_id': 1,
                'internal_port_id': 4,
            }])

        ti_op = TensorIterator(
            graph,
            {
                'name':
                rnn_layer.name + '/TensorIterator',
                'body':
                body,
                'in_ports_count':
                4,
                'out_ports_count':
                len(rnn_layer.out_nodes()),
                'input_port_map': [
                    {
                        'external_port_id': 0,
                        'internal_layer_id': 0,
                        'internal_port_id': 0,
                        'axis': rnn_layer.sequence_dim,
                        'stride': stride,
                        'start': start,
                        'end': end,
                        'part_size': 1,
                    },
                    {
                        'external_port_id': 1,
                        'internal_layer_id': 1,
                        'internal_port_id': 1,
                    },
                ],
                'output_port_map':
                output_port_map,
                # only for h state
                'back_edges': [
                    {
                        'from_layer': 1,
                        'from_port': 4,
                        'to_layer': 1,
                        'to_port': 1,
                    },
                ]
            })

        assert sorted(rnn_layer.out_nodes().keys()) == list(range(len(rnn_layer.out_nodes()))), \
            "There are gaps in output ports of GRUSequence operation. Node {}".format(rnn_layer.id)

        outs = ti_op.create_node_with_data(
            [rnn_layer.in_node(i) for i in [0, 4]],  # X, h_init
            data_nodes=[
                rnn_layer.out_node(i)
                for i in range(len(rnn_layer.out_nodes()))
            ],
            edge_attrs=[{
                'external_port_id': 0
            }, {
                'external_port_id': 1
            }])

        if not isinstance(outs, list):
            outs = list([outs])

        graph.remove_node(rnn_layer.id)
        outs[0].in_edge(0)['external_port_id'] = 3
        for i, out in enumerate(outs[1:]):
            external_port_id = 4 + i
            out.in_edge()['external_port_id'] = external_port_id

        ti = outs[0].in_node()
        TensorIterator.cover_body_input_data_nodes_with_parameter_ops(ti)
        TensorIterator.cover_body_constant_data_nodes_with_const_ops(ti)
        TensorIterator.normalize_internal_ids(ti)