Ejemplo n.º 1
0
    def placeholder_scales(self, placeholder: Node):
        """
        Helper function to get scales for prior boxes out of input image size:
                [1 / im_width, 1 / im_height, 1 / im_width, 1 / im_height]
        """
        graph = placeholder.graph
        name = placeholder.soft_get('name', placeholder.id)

        shape_value = placeholder.soft_get('shape', None)
        assert shape_value is not None, \
            "[ {} replacer ] Placeholder `{}` should have shape attribute".format(self.replacement_id, name)
        assert isinstance(shape_value, np.ndarray), \
            "[ {} replacer ] Placeholder `{}` shape attribute should be np.ndarray".format(self.replacement_id, name)
        assert shape_value.size == 4, \
            "[ {} replacer ] Placeholder `{}` should be 4D. Shape: {}".format(self.replacement_id, name, shape_value)

        shape = Shape(graph, {'name': 'input_image_shape'}).create_node()
        shape.in_port(0).connect(placeholder.out_port(0))

        begin = Const(graph, {'value': int64_array([1])}).create_node()
        end = Const(graph, {'value': int64_array([3])}).create_node()
        stride = Const(graph, {'value': int64_array([1])}).create_node()
        spatial = StridedSlice(graph, {'name': name + '/get_h_w', 'begin_mask': int64_array([1]),
                                       'end_mask': int64_array([1]), 'new_axis_mask': int64_array([0]),
                                       'shrink_axis_mask': int64_array([0]), 'ellipsis_mask': int64_array([0])}).create_node()

        spatial.in_port(0).connect(shape.out_port(0))
        spatial.in_port(1).connect(begin.out_port(0))
        spatial.in_port(2).connect(end.out_port(0))
        spatial.in_port(3).connect(stride.out_port(0))

        power = Const(graph, {'value': float32_array([-1.])}).create_node()
        spatial_scale = Pow(graph, {}).create_node()

        spatial_scale.in_port(0).connect(spatial.out_port(0))
        spatial_scale.in_port(1).connect(power.out_port(0))

        # Power `type_infer` requires inputs to have equal data type
        convert_to_fp32 = Cast(graph, {'dst_type': np.float32}).create_node()
        spatial_scale.in_port(0).get_connection().insert_node(convert_to_fp32)

        order = Const(graph, {'value': int64_array([1, 0])}).create_node()
        axis_const = Const(graph, {'value': int64_array(0)}).create_node()
        reverse = Gather(graph, {}).create_node()

        reverse.in_port(0).connect(spatial_scale.out_port(0))
        reverse.in_port(1).connect(order.out_port(0))
        axis_const.out_port(0).connect(reverse.in_port(2))

        priors_scale_node = Concat(graph, {'axis': 0, 'in_ports_count': 2}).create_node()
        priors_scale_node.add_input_port(0, skip_if_exist=True)
        priors_scale_node.add_input_port(1, skip_if_exist=True)

        priors_scale_node.in_port(0).connect(reverse.out_port(0))
        priors_scale_node.in_port(1).connect(reverse.out_port(0))
        return priors_scale_node
Ejemplo n.º 2
0
    def replace_sub_graph(self, graph: Graph, match: dict):
        node = match['op']

        strided_slice_node = StridedSlice(
            graph,
            dict(name=node.id + '/strided_slice_',
                 shrink_axis_mask=np.array(
                     np.zeros(len(node.crop_begin), dtype=np.int64)),
                 new_axis_mask=np.array(
                     np.zeros(len(node.crop_begin), dtype=np.int64)),
                 ellipsis_mask=np.array(
                     np.zeros(len(node.crop_begin), dtype=np.int64)),
                 begin_mask=np.array(
                     np.ones(len(node.crop_begin), dtype=np.int64)),
                 end_mask=np.array(np.ones(len(node.crop_end),
                                           dtype=np.int64)))).create_node()
        node.in_port(0).get_connection().set_destination(
            strided_slice_node.in_port(0))
        node.out_port(0).get_connection().set_source(
            strided_slice_node.out_port(0))

        crop_begin_node = Const(
            graph,
            dict(value=node.crop_begin,
                 symbol_dict={'name':
                              node.id + '/crop_begin_const'})).create_node()
        crop_end_node = Const(
            graph,
            dict(value=node.crop_end,
                 symbol_dict={'name':
                              node.id + '/crop_end_const'})).create_node()
        strided_slice_node.in_port(1).get_connection().set_source(
            crop_begin_node.out_port(0))
        strided_slice_node.in_port(2).get_connection().set_source(
            crop_end_node.out_port(0))

        if len(node.step) > 0:
            stride_node = Const(
                graph,
                dict(value=node.step,
                     symbol_dict={'name':
                                  node.id + '/steps_const'})).create_node()
            strided_slice_node.in_port(3).get_connection().set_source(
                stride_node.out_port(0))
Ejemplo n.º 3
0
    def find_and_replace_pattern(self, graph: Graph):
        for node in graph.get_op_nodes(op='Slice'):
            node_name = node.soft_get('name', node.id)

            input_shape = node.in_port(0).data.get_shape()
            if node.is_in_port_connected(3):
                axes = node.in_port(3).data.get_value().copy()
                assert axes is not None, 'The input with axes is not constant for node {}'.format(
                    node_name)
                for i, val in enumerate(axes):
                    axes[i] = get_canonical_axis_index(input_shape, val)
            else:
                axes = int64_array(range(len(input_shape)))

            ss_begin = create_ss_interval_border(graph,
                                                 node.in_port(1).get_source(),
                                                 input_shape, axes, node_name)
            ss_end = create_ss_interval_border(graph,
                                               node.in_port(2).get_source(),
                                               input_shape, axes, node_name)
            node.in_port(1).disconnect()
            node.in_port(2).disconnect()
            rename_nodes([(ss_begin, node_name + '/Begin'),
                          (ss_end, node_name + '/End')])

            if node.is_in_port_connected(4):
                steps = node.in_port(4).data.get_value()
                assert steps is not None, 'The input with steps is not constant for node {}'.format(
                    node_name)
            else:
                steps = np.ones([axes.size])

            ss_begin_mask = np.zeros(len(input_shape), dtype=np.int64)
            ss_end_mask = np.zeros(len(input_shape), dtype=np.int64)
            ss_step = np.ones(len(input_shape), dtype=np.int64)

            for i, axis in enumerate(axes):
                ss_begin_mask[axis] = 1
                ss_end_mask[axis] = 1
                ss_step[axis] = steps[i]

            ss_strides = Const(
                graph, dict(name=node_name + '/Strides',
                            value=ss_step)).create_node()

            ss = StridedSlice(
                graph,
                dict(name='ss',
                     new_axis_mask=np.zeros(len(input_shape), dtype=np.int64),
                     shrink_axis_mask=np.zeros(len(input_shape),
                                               dtype=np.int64),
                     ellipsis_mask=np.zeros(len(input_shape), dtype=np.int64),
                     begin_mask=ss_begin_mask,
                     end_mask=ss_end_mask)).create_node()

            node.in_port(0).get_connection().set_destination(ss.in_port(0))
            ss.in_port(1).connect(ss_begin.out_port(0))
            ss.in_port(2).connect(ss_end.out_port(0))
            ss.in_port(3).connect(ss_strides.out_port(0))
            node.out_port(0).get_connection().set_source(ss.out_port(0))

            rename_nodes([(node, node_name + '/ShouldBeDeleted'),
                          (ss, node_name)])
Ejemplo n.º 4
0
    def generate_sub_graph(self, graph: Graph, match: SubgraphMatch):
        reshape_classes_node = create_op_node_with_second_input(graph, Reshape, int64_array([0, -1]),
                                                                dict(name='do_reshape_classes'),
                                                                match.single_input_node(1)[0])

        initial_priors_node = match.single_input_node(2)[0]
        priors_name = initial_priors_node.soft_get('name', initial_priors_node.id)
        # model calculates identical prior boxes for each batch, so we take first slice of them
        begin = Const(graph, {'value': mo_array([0, 0, 0], dtype=np.int32)}).create_node()
        end = Const(graph, {'value': mo_array([1, 0, 0], dtype=np.int32)}).create_node()
        stride = Const(graph, {'value': mo_array([1, 1, 1], dtype=np.int32)}).create_node()

        priors_node = StridedSlice(graph, {'name': priors_name + '/0_batch_slice',
                                           'begin_mask': int64_array([1, 1, 1]),
                                           'end_mask': int64_array([1, 0, 0]),
                                           'new_axis_mask': int64_array([0]),
                                           'shrink_axis_mask': int64_array([0]),
                                           'ellipsis_mask': int64_array([0])}).create_node()

        initial_priors_node.out_port(0).connect(priors_node.in_port(0))
        begin.out_port(0).connect(priors_node.in_port(1))
        end.out_port(0).connect(priors_node.in_port(2))
        stride.out_port(0).connect(priors_node.in_port(3))

        placeholders = graph.get_op_nodes(type='Parameter')
        assert len(placeholders) == 1, "{} replacer requires model to have one Placeholder, but current model has " \
                                       "{} placeholders".format(self.replacement_id, len(placeholders))
        placeholder = placeholders[0]

        # scale prior boxes to the [0, 1] interval
        node_with_scales_for_prior_boxes = self.placeholder_scales(placeholder)
        priors_scale_node = Mul(graph, {'name': 'scale_priors'}).create_node()

        broadcast = Broadcast(graph, {'name': 'scales_broadcast'}).create_node()
        shape_of_priors = Shape(graph, {'name': 'priors_shape'}).create_node()
        priors_node.out_port(0).connect(shape_of_priors.in_port(0))
        broadcast.in_port(1).connect(shape_of_priors.out_port(0))
        broadcast.in_port(0).connect(node_with_scales_for_prior_boxes.out_port(0))

        priors_scale_node.in_port(0).connect(priors_node.out_port(0))
        priors_scale_node.in_port(1).connect(broadcast.out_port(0))

        try:
            variance = match.custom_replacement_desc.custom_attributes['variance']
        except:
            raise Error('There is no variance attribute in {} replacement config file `custom_attributes`'
                        ''.format(self.replacement_id))

        priors = self.append_variances(priors_scale_node, variance)

        # calculate prior boxes widths and heights
        split_node = create_op_with_const_inputs(
            graph, VariadicSplit, {1: int64_array(2), 2: int64_array([1, 1, 1, 1])}, {'out_ports_count': 4},
            priors_scale_node)

        priors_width_node = Sub(graph, dict(name=split_node.name + '/sub_2-0_')
                                ).create_node([(split_node, 2), (split_node, 0)])
        priors_height_node = Sub(graph, dict(name=split_node.name + '/sub_3-1_')
                                 ).create_node([(split_node, 3), (split_node, 1)])

        # concat weights and heights into a single tensor and multiple with the box coordinates regression values
        # WA with 3 Concats instead of 1 for keeping model reshapable
        # concat_width_height_node = Concat(graph, {'name': 'concat_priors_width_height', 'axis': -1,
        #                                           'in_ports_count': 4}).create_node(
        # [priors_width_node, priors_height_node, priors_width_node, priors_height_node])

        concat_1 = Concat(graph, {'name': 'concat_width_height',
                                  'axis': -1, 'in_ports_count': 2}).create_node([priors_width_node, priors_height_node])
        concat_2 = Concat(graph, {'name': 'concat_width_height_width',
                                  'axis': -1, 'in_ports_count': 2}).create_node([concat_1, priors_width_node])
        concat_width_height_node = Concat(graph, {'name': 'concat_priors_width_height', 'axis': -1, 'in_ports_count': 2}
                                          ).create_node([concat_2, priors_height_node])

        applied_width_height_regressions_node = Mul(graph, {'name': 'final_regressions'}).create_node(
            [concat_width_height_node, match.single_input_node(0)[0]])

        # reshape to 2D tensor as Inference Engine Detection Output layer expects
        reshape_regression_node = create_op_node_with_second_input(graph, Reshape, int64_array([0, -1]),
                                                                   dict(name='reshape_regression'),
                                                                   applied_width_height_regressions_node)

        detection_output_op = DetectionOutput(graph, match.custom_replacement_desc.custom_attributes)
        # get nms from the original network
        iou_threshold = None
        nms_nodes = graph.get_op_nodes(op='NonMaxSuppression')
        if len(nms_nodes) > 0:
            # it is highly unlikely that for different classes NMS has different
            # moreover DetectionOutput accepts only scalar values for iou_threshold (nms_threshold)
            iou_threshold = nms_nodes[0].in_node(3).value
        if iou_threshold is None:
            raise Error('During {} `iou_threshold` was not retrieved from RetinaNet graph'.format(self.replacement_id))

        detection_output_node = detection_output_op.create_node(
            [reshape_regression_node, reshape_classes_node, priors],
            dict(name=detection_output_op.attrs['type'], nms_threshold=iou_threshold, clip_after_nms=1, normalized=1,
                 variance_encoded_in_target=0, background_label_id=1000))

        # As outputs are replaced with a postprocessing node, outgoing tensor names are no longer
        # correspond to original tensors and should be removed from output->Result edges
        out_nodes = []
        for out in range(match.outputs_count()):
            out_nodes.append(match.output_node(out)[0])
        clear_tensor_names_info(out_nodes)

        return {'detection_output_node': detection_output_node}
Ejemplo n.º 5
0
    def replace_sub_graph(self, graph: Graph, match: dict):
        node = match['op']

        if 1 not in node.in_ports() or node.in_port(1).disconnected():

            if node.has_valid('factor') and not node.has_valid('width') and not node.has_valid('height'):
                factor = Const(graph, {'value': np.array(node.factor)}).create_node()

                shape = Shape(graph, {'name': node.name + '/shape'}).create_node()

                begin = Const(graph, {'value': np.array([2])}).create_node()
                end = Const(graph, {'value': np.array([4])}).create_node()
                stride = Const(graph, {'value': np.array([1])}).create_node()
                ss = StridedSlice(graph, {'name': node.name + '/ss_0_port', 'begin_mask': np.array([1]),
                                          'end_mask': np.array([0]), 'new_axis_mask': np.array([0]),
                                          'shrink_axis_mask': np.array([0]),
                                          'ellipsis_mask': np.array([0])}).create_node()

                mul = Mul(graph, {'name': node.name + '/factor_mul_'}).create_node()

                source = node.in_port(0).get_connection().get_source()
                source.connect(shape.in_port(0))
                shape.out_port(0).connect(ss.in_port(0))
                begin.out_port(0).connect(ss.in_port(1))
                end.out_port(0).connect(ss.in_port(2))
                stride.out_port(0).connect(ss.in_port(3))
                ss.out_port(0).connect(mul.in_port(0))
                factor.out_port(0).connect(mul.in_port(1))

                node.add_input_port(1, skip_if_exist=True)
                assert node.in_port(1).disconnected()
                mul.out_port(0).connect(node.in_port(1))

            else:
                shape = Shape(graph, {'name': node.name + '/shape'}).create_node()

                begin = Const(graph, {'value': np.array([2])}).create_node()
                end = Const(graph, {'value': np.array([4])}).create_node()
                stride = Const(graph, {'value': np.array([1])}).create_node()
                ss = StridedSlice(graph, {'name': node.name + '/ss_0_port', 'begin_mask': np.array([1]),
                                          'end_mask': np.array([0]), 'new_axis_mask': np.array([0]),
                                          'shrink_axis_mask': np.array([0]),
                                          'ellipsis_mask': np.array([0])}).create_node()

                source = node.in_port(0).get_connection().get_source()
                source.connect(shape.in_port(0))
                shape.out_port(0).connect(ss.in_port(0))
                begin.out_port(0).connect(ss.in_port(1))
                end.out_port(0).connect(ss.in_port(2))
                stride.out_port(0).connect(ss.in_port(3))

                pads_value = node.pads_begin + node.pads_end
                pads_const = Const(graph, {'value': np.array(pads_value)}).create_node()
                add = Add(graph, {'name': node.name + '/pad_add'}).create_node()
                ss.out_port(0).connect(add.in_port(0))
                add.in_port(1).connect(pads_const.out_port(0))

                if node.soft_get('shrink_factor') != 1 and node.soft_get('zoom_factor') == 1:
                    shrink_factor = node.shrink_factor
                    if shrink_factor < 1:
                        log.error('Shrink factor should be positive in node {}'.format(node.id))
                        return None

                    const = Const(graph, {'name': node.name + '/pre_shrink_sub_const',
                                          'value': np.array(-1)}).create_node()
                    sub = Add(graph, {'name': node.name + '/pre_shrink_sub'}).create_node()
                    add.out_port(0).connect(sub.in_port(0))
                    sub.in_port(1).connect(const.out_port(0))

                    const = Const(graph, {'value': np.array(1 / shrink_factor),
                                          'name': node.name + 'shrink_factor_div_const'}).create_node()
                    div = Mul(graph, {'name': node.name + 'shrink_factor_div'}).create_node()
                    sub.out_port(0).connect(div.in_port(0))
                    div.in_port(1).connect(const.out_port(0))

                    const = Const(graph, {'name': node.name + '/shrink_factor_add_one_const', 'value': np.array(1)
                                          }).create_node()
                    add = Add(graph, {'name': node.name + '/shrink_factor_add_one'}).create_node()
                    div.out_port(0).connect(add.in_port(0))
                    const.out_port(0).connect(add.in_port(1))

                    node.add_input_port(1, skip_if_exist=True)
                    assert node.in_port(1).disconnected()
                    add.out_port(0).connect(node.in_port(1))

                elif node.soft_get('shrink_factor') == 1 and node.soft_get('zoom_factor') != 1:
                    zoom_factor = node.zoom_factor
                    if zoom_factor < 1:
                        log.error('Zoom factor should be positive in node {}'.format(node.id))
                        return None

                    node['debug_message'] = 'Interpolate layer replacer may be wrong, please, try to update it in the' \
                                            ' file (openvino/tools/mo/front/InterpolateNormalizer.py at the line {}).' \
                                            ''.format(inspect.currentframe().f_lineno) + refer_to_faq_msg(100)

                    # Reshape methods can be different in some cases
                    # Commented out section represents reshape that used in deeplab-caffe
                    # Uncomment the following lines, if your model was trained with deeplab-caffe
                    # or have the same reshape method
                    # const = Const(graph, {'value': np.array(-1),
                    #                       'name': node.name + 'zoom_factor_deeplab-caffe_sub_const'}).create_node()
                    # sub = Add(graph, {'name': node.name + 'zoom_factor_deeplab-caffe_sub'}).create_node()
                    # add.out_port(0).connect(sub.in_port(0))
                    # const.out_port(0).connect(sub.in_port(1))
                    #
                    # const = Const(graph, {'value': np.array(zoom_factor - 1),
                    #                       'name': node.name + 'zoom_factor_deeplab-caffe_mul_const'}).create_node()
                    # mul = Mul(graph, {'name': node.name + 'zoom_factor_deeplab-caffe_mul'}).create_node()
                    # sub.out_port(0).connect(mul.in_port(0))
                    # const.out_port(0).connect(mul.in_port(1))
                    #
                    # sum = Add(graph, {'name': node.name + 'zoom_factor_deeplab-caffe_sum'}).create_node()
                    # add.out_port(0).connect(sum.in_port(0))
                    # mul.out_port(0).connect(sum.in_port(1))
                    #
                    # node.add_input_port(1, skip_if_exist=True)
                    # assert node.in_port(1).disconnected()
                    # sum.out_port(0).connect(node.in_port(1))

                    # Comment out the following lines if you use the reshape method from previous section
                    const = Const(graph, {'value': np.array(zoom_factor),
                                          'name': node.name + '/zoom_factor_mul_const'}).create_node()
                    mul = Mul(graph, {'name': node.name + '/zoom_factor_mul'}).create_node()

                    add.out_port(0).connect(mul.in_port(0))
                    const.out_port(0).connect(mul.in_port(1))

                    node.add_input_port(1, skip_if_exist=True)
                    assert node.in_port(1).disconnected()
                    mul.out_port(0).connect(node.in_port(1))

                elif node.soft_get('width') != 0 and node.soft_get('height') != 0:
                    const = Const(graph, {'value': np.array([node.height, node.width])}).create_node()
                    node.add_input_port(1, skip_if_exist=True)
                    assert node.in_port(1).disconnected()
                    const.out_port(0).connect(node.in_port(1))

                elif node.soft_get('shrink_factor') != 1 and node.soft_get('zoom_factor') != 1:
                    shrink_factor = node.shrink_factor
                    zoom_factor = node.zoom_factor
                    if shrink_factor < 1:
                        log.error('Shrink factor should be positive in node {}'.format(node.id))
                        return None
                    if zoom_factor < 1:
                        log.error('Zoom factor should be positive in node {}'.format(node.id))
                        return None

                    const = Const(graph, {'value': np.array(-1)}).create_node()
                    sub = Add(graph, {'name': node.name + '/shrink_zoom_factor_sub'}).create_node()
                    add.out_port(0).connect(sub.in_port(0))
                    const.out_port(0).connect(sub.in_port(1))

                    const = Const(graph, {'value': np.array(1 / (shrink_factor + 1))}).create_node()
                    div = Mul(graph, {'name': node.name + '/shrink_factor_div'}).create_node()
                    sub.out_port(0).connect(div.in_port(0))
                    const.out_port(0).connect(div.in_port(1))

                    const = Const(graph, {'value': np.array(-1),
                                          'name': node.name + 'shrink_zoom_factor_sum_const'}).create_node()
                    sum = Add(graph, {'name': node.name + '/shrink_zoom_factor_sum'}).create_node()
                    div.out_port(0).connect(sum.in_port(0))
                    const.out_port(0).connect(sum.in_port(1))

                    const = Const(graph, {'value': np.array(zoom_factor - 1)}).create_node()
                    mul = Mul(graph, {'name': node.name + '/zoom_factor_mul'}).create_node()
                    sum.out_port(0).connect(mul.in_port(0))
                    const.out_port(0).connect(mul.in_port(1))

                    sum = Add(graph, {'name': node.name + '/final_shrink_zoom_factor_sum'}).create_node()
                    div.out_port(0).connect(sum.in_port(0))
                    mul.out_port(0).connect(sum.in_port(1))

                    node.add_input_port(1, skip_if_exist=True)
                    assert node.in_port(1).disconnected()
                    sum.out_port(0).connect(node.in_port(1))
        else:
            if node.soft_get('fw') == 'caffe':
                shape = Shape(graph, {'name': node.name + '/shape'}).create_node()

                begin = Const(graph, {'value': np.array([2])}).create_node()
                end = Const(graph, {'value': np.array([4])}).create_node()
                stride = Const(graph, {'value': np.array([1])}).create_node()
                ss = StridedSlice(graph, {'name': node.name + '/ss_0_port', 'begin_mask': np.array([1]),
                                          'end_mask': np.array([0]), 'new_axis_mask': np.array([0]),
                                          'shrink_axis_mask': np.array([0]),
                                          'ellipsis_mask': np.array([0])}).create_node()

                source = node.in_port(1).get_connection().get_source()
                node.in_port(1).disconnect()
                source.connect(shape.in_port(0))
                shape.out_port(0).connect(ss.in_port(0))
                begin.out_port(0).connect(ss.in_port(1))
                end.out_port(0).connect(ss.in_port(2))
                stride.out_port(0).connect(ss.in_port(3))
                ss.out_port(0).connect(node.in_port(1))
Ejemplo n.º 6
0
    def replace_pattern(self, graph: Graph, match: dict):
        node = match['pb']
        name = node.soft_get('name', node.id)

        graph.graph['cmd_params'].static_shape = False

        assert len(node.in_ports()) == 2

        begin = Const(graph, {
            'value': mo_array([2], dtype=np.int32),
            'name': name + '/ss_begin'
        }).create_node()
        end = Const(graph, {
            'value': mo_array([4], dtype=np.int32),
            'name': name + '/ss_end'
        }).create_node()
        stride = Const(graph, {
            'value': mo_array([1], dtype=np.int32),
            'name': name + '/ss_stride'
        }).create_node()

        shape_0 = Shape(graph, {'name': name + '/0_port'}).create_node()
        ss_0 = StridedSlice(
            graph, {
                'name': name + '/ss_0_port',
                'begin_mask': mo_array([1], dtype=np.int32),
                'end_mask': mo_array([0], dtype=np.int32),
                'new_axis_mask': mo_array([0], dtype=np.int32),
                'shrink_axis_mask': mo_array([0], dtype=np.int32),
                'ellipsis_mask': mo_array([0], dtype=np.int32)
            }).create_node()

        shape_0.out_port(0).connect(ss_0.in_port(0))
        begin.out_port(0).connect(ss_0.in_port(1))
        end.out_port(0).connect(ss_0.in_port(2))
        stride.out_port(0).connect(ss_0.in_port(3))

        source = node.in_port(0).get_connection().get_source()
        node.in_port(0).disconnect()
        source.connect(shape_0.in_port(0))
        ss_0.out_port(0).connect(node.in_port(0))

        shape_1 = Shape(graph, {'name': name + '/1_port'}).create_node()
        ss_1 = StridedSlice(
            graph, {
                'name': name + '/ss_1_port',
                'begin_mask': mo_array([1], dtype=np.int32),
                'end_mask': mo_array([0], dtype=np.int32),
                'new_axis_mask': mo_array([0], dtype=np.int32),
                'shrink_axis_mask': mo_array([0], dtype=np.int32),
                'ellipsis_mask': mo_array([0], dtype=np.int32)
            }).create_node()

        shape_1.out_port(0).connect(ss_1.in_port(0))
        begin.out_port(0).connect(ss_1.in_port(1))
        end.out_port(0).connect(ss_1.in_port(2))
        stride.out_port(0).connect(ss_1.in_port(3))

        source = node.in_port(1).get_connection().get_source()
        node.in_port(1).disconnect()
        source.connect(shape_1.in_port(0))
        ss_1.out_port(0).connect(node.in_port(1))

        ss_0['force_precision_in_ports'] = {1: 'int64', 2: 'int64', 3: 'int64'}
        ss_1['force_precision_in_ports'] = {1: 'int64', 2: 'int64', 3: 'int64'}

        node['need_shape_inference'] = True
        node['override_output_shape'] = True
        node['V10_infer'] = True
        unsqueeze = create_op_node_with_second_input(
            graph, Unsqueeze, int64_array([0]), {'name': name + '/unsqueeze'})
        naked_priorbox_name = name + '/naked_not_unsqueezed'
        rename_nodes([(node, naked_priorbox_name), (unsqueeze, name)])

        node.out_port(0).get_connection().set_source(unsqueeze.out_port(0))
        node.out_port(0).connect(unsqueeze.in_port(0))
Ejemplo n.º 7
0
    def replace_pattern(self, graph: Graph, match: [str, Node]):
        node = match['crop']
        assert node.has_valid('axis')
        node_axis = self.list_to_ndarray(node.axis)

        in_shape = node.in_port(0).data.get_shape()
        shape_rank = in_shape.size
        axis_mask = int64_array(
            [1 if i in node_axis else 0 for i in range(shape_rank)])
        begin_mask = axis_mask.copy()
        end_mask = axis_mask.copy()

        ss = StridedSlice(
            graph, {
                'name': node.soft_get('name', node.id) + '/strided_slice',
                'begin_mask': begin_mask,
                'end_mask': end_mask,
                'new_axis_mask': np.zeros(len(end_mask)),
                'shrink_axis_mask': np.zeros(len(end_mask)),
                'ellipsis_mask': np.zeros(len(end_mask))
            }).create_node()

        if len(node.in_nodes()) == 2 and node.has_valid('offset'):
            # Crop Type 1
            begin = Const(
                graph, {
                    'value':
                    self.mask_normalizer(shape_rank, node_axis, node.offset),
                    'name':
                    ss.name + '/begin'
                }).create_node()
            shape = Shape(graph, {
                'name': ss.name + '/shape_of_crop'
            }).create_node()
            end = Add(graph, {'name': ss.name + '/end'}).create_node()
            node.in_port(1).get_connection().get_source().connect(
                shape.in_port(0))
            node.in_port(1).disconnect()
            shape.out_port(0).connect(end.in_port(0))
            begin.out_port(0).connect(end.in_port(1))
        elif node.has_valid('dim') and node.has_valid('offset'):
            # Crop Type 2
            node_dim = self.list_to_ndarray(node.dim)
            node_offset = self.list_to_ndarray(node.offset)
            assert node_dim.size == node_offset.size == node_axis.size

            begin = Const(
                graph, {
                    'value':
                    self.mask_normalizer(shape_rank, node_axis, node_offset),
                    'name':
                    ss.name + '/begin'
                }).create_node()
            end_values = mo_array(
                [node_offset[i] + node_dim[i] for i in range(len(node_dim))])
            end = Const(
                graph, {
                    'value':
                    self.mask_normalizer(shape_rank, node_axis, end_values),
                    'name':
                    ss.name + '/end'
                }).create_node()
        elif node.has_valid('crop_begin') and node.has_valid('crop_end'):
            # Crop Type 3
            node_crop_begin = self.list_to_ndarray(node.crop_begin)
            node_crop_end = self.list_to_ndarray(node.crop_end)
            assert len(node_crop_begin) == len(node_crop_end) == len(node_axis)

            begin = Const(
                graph, {
                    'value':
                    self.mask_normalizer(shape_rank, node_axis,
                                         node_crop_begin),
                    'name':
                    ss.name + '/begin'
                }).create_node()
            shape = Shape(graph, {'name': ss.name + '/shape'}).create_node()

            end = Add(graph, {'name': ss.name + '/end'}).create_node()
            const = Const(
                graph, {
                    'value':
                    -1 *
                    self.mask_normalizer(shape_rank, node_axis, node_crop_end),
                    'name':
                    ss.name + '/const'
                }).create_node()

            node.in_port(0).get_connection().get_source().connect(
                shape.in_port(0))
            shape.out_port(0).connect(end.in_port(0))
            const.out_port(0).connect(end.in_port(1))

        else:
            raise Exception("Unknown type of Crop")

        source = node.in_port(0).get_connection().get_source()

        stride = Const(
            graph, {
                'value': np.ones(shape_rank, dtype=np.int64),
                'name': ss.name + '/stride'
            }).create_node()

        source.connect(ss.in_port(0))
        begin.out_port(0).connect(ss.in_port(1))
        end.out_port(0).connect(ss.in_port(2))
        stride.out_port(0).connect(ss.in_port(3))

        node.in_port(0).disconnect()
        node.out_port(0).get_connection().set_source(ss.out_port(0))

        ss['force_precision_in_ports'] = {1: 'int64', 2: 'int64', 3: 'int64'}