def weak_residuals(U0, U1, U, w, kn, problem): "Return weak residuals" # Extract variables U_F0, P_F0, U_S0, P_S0, U_M0 = U0 U_F1, P_F1, U_S1, P_S1, U_M1 = U1 U_F, P_F, U_S, P_S, U_M = U v_F, q_F, s_F, v_S, q_S, v_M, q_M = w # Get problem parameters Omega = problem.mesh() rho_F = problem.fluid_density() mu_F = problem.fluid_viscosity() rho_S = problem.structure_density() mu_S = problem.structure_mu() lmbda_S = problem.structure_lmbda() alpha_M = problem.mesh_alpha() mu_M = problem.mesh_mu() lmbda_M = problem.mesh_lmbda() # MER: added these B = problem.structure_body_force() G_0 = problem.structure_boundary_traction_extra() F_M = problem.mesh_right_hand_side() # Define normals N = FacetNormal(Omega) N_F = N N_S = -N # Define cell integrals dx_F = dx(0) dx_S = dx(1) # Define facet integrals dS_F = dS(0) dS_S = dS(1) d_FSI = dS(2) # Define time derivatives dt_U_F = (1/kn) * (U_F1 - U_F0) dt_U_M = (1/kn) * (U_M1 - U_M0) Dt_U_F = rho_F * J(U_M) * (dt_U_F + dot(grad(U_F), dot(inv(F(U_M)), U_F - dt_U_M))) Dt_U_S = (1/kn) * (U_S1 - U_S0) Dt_P_S = rho_S * (1/kn) * (P_S1 - P_S0) Dt_U_M = alpha_M * (1/kn) * (U_M1 - U_M0) # Define stresses Sigma_F = PiolaTransform(_Sigma_F(U_F, P_F, U_M, mu_F), U_M) Sigma_S = _Sigma_S(U_S, mu_S, lmbda_S) Sigma_M = _Sigma_M(U_M, mu_M, lmbda_M) # Fluid residual Id = I(U_F) R_F = inner(v_F, Dt_U_F)*dx_F + inner(grad(v_F), Sigma_F)*dx_F \ - inner(v_F, mu_F*J(U_M)*dot(dot(inv(F(U_M)).T, grad(U_F).T), dot(inv(F(U_M)).T, N_F)))*ds \ + inner(v_F, J(U_M)*P_F*dot(Id, dot(inv(F(U_M)).T, N_F)))*ds \ + inner(q_F, div(J(U_M)*dot(inv(F(U_M)), U_F)))*dx_F # Structure residual # MER: What about the body force? (Added, makes a difference, good) # MER And the extra stress? (Added, sign dubious, b/c evaluates to # zero since it is orthogonal to test case dual solution) R_S = inner(v_S, Dt_P_S)*dx_S + inner(grad(v_S), Sigma_S)*dx_S \ - inner(v_S('-'), dot(Sigma_F('+'), N_S('+')))*d_FSI \ + inner(q_S, Dt_U_S - P_S)*dx_S \ - inner(v_S, B)*dx_S \ + inner(v_S('-'), G_0('-'))*d_FSI \ # Mesh residual contributions R_M = inner(v_M, Dt_U_M)*dx_F + inner(sym(grad(v_M)), Sigma_M)*dx_F \ + inner(q_M, U_M - U_S)('+')*d_FSI \ - inner(v_M, F_M)*dx_F return R_F, R_S, R_M
def weak_residuals(U0, U1, U, w, kn, problem): "Return weak residuals" # Extract variables U_F0, P_F0, U_S0, P_S0, U_M0 = U0 U_F1, P_F1, U_S1, P_S1, U_M1 = U1 U_F, P_F, U_S, P_S, U_M = U v_F, q_F, v_S, q_S, v_M, q_M = w # Get problem parameters Omega = problem.mesh() rho_F = problem.fluid_density() mu_F = problem.fluid_viscosity() rho_S = problem.structure_density() mu_S = problem.structure_mu() lmbda_S = problem.structure_lmbda() alpha_M = problem.mesh_alpha() mu_M = problem.mesh_mu() lmbda_M = problem.mesh_lmbda() # Define normals N = FacetNormal(Omega) N_F = N N_S = -N # Define cell integrals dx_F = dx(0) dx_S = dx(1) # Define facet integrals dS_F = dS(0) dS_S = dS(1) d_FSI = dS(2) # Define time derivatives dt_U_F = (1 / kn) * (U_F1 - U_F0) dt_U_M = (1 / kn) * (U_M1 - U_M0) Dt_U_F = rho_F * J(U_M) * (dt_U_F + dot(grad(U_F), dot(inv(F(U_M)), U_F - dt_U_M))) Dt_U_S = (1 / kn) * (U_S1 - U_S0) Dt_P_S = rho_S * (1 / kn) * (P_S1 - P_S0) Dt_U_M = alpha_M * (1 / kn) * (U_M1 - U_M0) # Define stresses Sigma_F = PiolaTransform(_Sigma_F(U_F, P_F, U_M, mu_F), U_M) Sigma_S = _Sigma_S(U_S, mu_S, lmbda_S) Sigma_M = _Sigma_M(U_M, mu_M, lmbda_M) # Fluid residual R_F = inner(v_F, Dt_U_F)*dx_F + inner(grad(v_F), Sigma_F)*dx_F \ - inner(v_F, mu_F*J(U_M)*dot(dot(inv(F(U_M)).T, grad(U_F).T), dot(inv(F(U_M)).T, N_F)))*ds \ + inner(v_F, J(U_M)*P_F*dot(I, dot(inv(F(U_M)).T, N_F)))*ds \ + inner(q_F, div(J(U_M)*dot(inv(F(U_M)), U_F)))*dx_F # Structure residual R_S = inner(v_S, Dt_P_S)*dx_S + inner(grad(v_S), Sigma_S)*dx_S \ - inner(v_S('-'), dot(Sigma_F('+'), N_S('+')))*d_FSI \ + inner(q_S, Dt_U_S - P_S)*dx_S # Mesh residual contributions R_M = inner(v_M, Dt_U_M)*dx_F + inner(sym(grad(v_M)), Sigma_M)*dx_F \ + inner(q_M, U_M - U_S)('+')*d_FSI return R_F, R_S, R_M
def strong_residuals(U0, U1, U, Z, EZ, w, kn, problem): "Return strong residuals (integrated by parts)" # Extract variables U_F0, P_F0, U_S0, P_S0, U_M0 = U0 U_F1, P_F1, U_S1, P_S1, U_M1 = U1 U_F, P_F, U_S, P_S, U_M = U Z_F, Y_F, X_F, Z_S, Y_S, Z_M, Y_M = Z EZ_F, EY_F, EX_F ,EZ_S, EY_S, EZ_M, EY_M = EZ # Get problem parameters Omega = problem.mesh() Omega_F = problem.fluid_mesh() Omega_S = problem.structure_mesh() rho_F = problem.fluid_density() mu_F = problem.fluid_viscosity() rho_S = problem.structure_density() mu_S = problem.structure_mu() lmbda_S = problem.structure_lmbda() alpha_M = problem.mesh_alpha() mu_M = problem.mesh_mu() lmbda_M = problem.mesh_lmbda() # Define normals N = FacetNormal(Omega) N_F = N N_S = N # FIXME: Check sign of N_S, should it be -N? # Define inner products dx_F = dx(0) dx_S = dx(1) # Define "facet" products dS_F = dS(0) dS_S = dS(1) d_FSI = dS(2) # Define midpoint values U_F = 0.5 * (U_F0 + U_F1) P_F = 0.5 * (P_F0 + P_F1) U_S = 0.5 * (U_S0 + U_S1) P_S = 0.5 * (P_S0 + P_S1) U_M = 0.5 * (U_M0 + U_M1) # Define time derivatives dt_U_F = (1/kn) * (U_F1 - U_F0) dt_U_M = (1/kn) * (U_M1 - U_M0) Dt_U_F = rho_F * J(U_M) * (dt_U_F + dot(grad(U_F), dot(inv(F(U_M)), U_F - dt_U_M))) Dt_U_S = (1/kn) * (U_S1 - U_S0) Dt_P_S = rho_S * (1/kn) * (P_S1 - P_S0) Dt_U_M = alpha_M * (1/kn) * (U_M1 - U_M0) # Define stresses Sigma_F = PiolaTransform(_Sigma_F(U_F, P_F, U_M, mu_F), U_M) Sigma_S = _Sigma_S(U_S, mu_S, lmbda_S) Sigma_M = _Sigma_M(U_M, mu_M, lmbda_M) # Fluid residual contributions # FIXME: Add dual Lagrange multiplier EX_F for the fluid R_F0 = w*inner(EZ_F - Z_F, Dt_U_F - div(Sigma_F))*dx_F R_F1 = avg(w)*inner(EZ_F('+') - Z_F('+'), jump(Sigma_F, N_F))*dS_F R_F2 = w*inner(EZ_F - Z_F, dot(Sigma_F, N_F))*ds R_F3 = w*inner(EY_F - Y_F, div(J(U_M)*dot(inv(F(U_M)), U_F)))*dx_F # Structure residual contributions (note the minus sign on N_F('+')) R_S0 = w*inner(EZ_S - Z_S, Dt_P_S - div(Sigma_S))*dx_S R_S1 = avg(w)*inner(EZ_S('-') - Z_S('-'), jump(Sigma_S, N_S))*dS_S R_S2 = w('-')*inner(EZ_S('-') - Z_S('-'), dot(Sigma_S('-') - Sigma_F('+'), -N_F('+')))*d_FSI R_S3 = w*inner(EY_S - Y_S, Dt_U_S - P_S)*dx_S # Mesh residual contributions R_M0 = w*inner(EZ_M - Z_M, Dt_U_M - div(Sigma_M))*dx_F R_M1 = avg(w)*inner(EZ_M('+') - Z_M('+'), jump(Sigma_M, N_F))*dS_F R_M2 = w('+')*inner(EY_M - Y_M, U_M - U_S)('+')*d_FSI # this should be zero return (R_F0, R_F1, R_F2, R_F3), (R_S0, R_S1, R_S2, R_S3), (R_M0, R_M1, R_M2)
def weak_residuals(U0, U1, U, w, kn, problem): "Return weak residuals" # Extract variables U_F0, P_F0, U_S0, P_S0, U_M0 = U0 U_F1, P_F1, U_S1, P_S1, U_M1 = U1 U_F, P_F, U_S, P_S, U_M = U v_F, q_F, v_S, q_S, v_M, q_M = w # Get problem parameters Omega = problem.mesh() rho_F = problem.fluid_density() mu_F = problem.fluid_viscosity() rho_S = problem.structure_density() mu_S = problem.structure_mu() lmbda_S = problem.structure_lmbda() alpha_M = problem.mesh_alpha() mu_M = problem.mesh_mu() lmbda_M = problem.mesh_lmbda() # Define normals N = FacetNormal(Omega) N_F = N N_S = -N # Define cell integrals dx_F = dx(0) dx_S = dx(1) # Define facet integrals dS_F = dS(0) dS_S = dS(1) d_FSI = dS(2) # Define time derivatives dt_U_F = (1/kn) * (U_F1 - U_F0) dt_U_M = (1/kn) * (U_M1 - U_M0) Dt_U_F = rho_F * J(U_M) * (dt_U_F + dot(grad(U_F), dot(inv(F(U_M)), U_F - dt_U_M))) Dt_U_S = (1/kn) * (U_S1 - U_S0) Dt_P_S = rho_S * (1/kn) * (P_S1 - P_S0) Dt_U_M = alpha_M * (1/kn) * (U_M1 - U_M0) # Define stresses Sigma_F = PiolaTransform(_Sigma_F(U_F, P_F, U_M, mu_F), U_M) Sigma_S = _Sigma_S(U_S, mu_S, lmbda_S) Sigma_M = _Sigma_M(U_M, mu_M, lmbda_M) # Fluid residual R_F = inner(v_F, Dt_U_F)*dx_F + inner(grad(v_F), Sigma_F)*dx_F \ - inner(v_F, mu_F*J(U_M)*dot(dot(inv(F(U_M)).T, grad(U_F).T), dot(inv(F(U_M)).T, N_F)))*ds \ + inner(v_F, J(U_M)*P_F*dot(I, dot(inv(F(U_M)).T, N_F)))*ds \ + inner(q_F, div(J(U_M)*dot(inv(F(U_M)), U_F)))*dx_F # Structure residual R_S = inner(v_S, Dt_P_S)*dx_S + inner(grad(v_S), Sigma_S)*dx_S \ - inner(v_S('-'), dot(Sigma_F('+'), N_S('+')))*d_FSI \ + inner(q_S, Dt_U_S - P_S)*dx_S # Mesh residual contributions R_M = inner(v_M, Dt_U_M)*dx_F + inner(sym(grad(v_M)), Sigma_M)*dx_F \ + inner(q_M, U_M - U_S)('+')*d_FSI return R_F, R_S, R_M