def evaluate(self, loader, verbose=False, write_summary=False, epoch=None):

        self.eval()

        valid_loss = 0

        all_class_probs = []
        all_labels = []

        with torch.no_grad():
            for batch_idx, sample in enumerate(loader):

                signal, labels = (
                    sample["signal"].to(self.device),
                    sample["labels"].to(self.device).float()
                )

                outputs = self(signal)

                class_logits = outputs["class_logits"]

                loss = (
                    lsep_loss(
                        class_logits,
                        labels,
                    )
                ).item()

                multiplier = len(labels) / len(loader.dataset)

                valid_loss += loss * multiplier

                class_probs = torch.sigmoid(class_logits).data.cpu().numpy()
                labels = labels.data.cpu().numpy()

                all_class_probs.extend(class_probs)
                all_labels.extend(labels)

            all_class_probs = np.asarray(all_class_probs)
            all_labels = np.asarray(all_labels)

            metric = lwlrap(all_labels, all_class_probs)

            if write_summary:
                self.add_scalar_summaries(
                    valid_loss,
                    metric,
                    writer=self.valid_writer, global_step=self.global_step
                )

            if verbose:
                print("\nValidation loss: {:.4f}".format(valid_loss))
                print("Validation metric: {:.4f}".format(metric))

            return metric
Ejemplo n.º 2
0
                audio_files=train_df.fname.tolist(),
                labels=[item.split(",") for item in train_df.labels.values],
                transform=MapLabels(class_map))
        ])

        val_labels_df = pd.DataFrame(
            labels, columns=get_class_names_from_classmap(class_map))
        val_labels_df["fname"] = train_df.fname

        assert set(val_predictions_df.fname) == set(val_labels_df.fname)

        val_predictions_df.sort_values(by="fname", inplace=True)
        val_labels_df.sort_values(by="fname", inplace=True)

        metric = lwlrap(
            val_labels_df.drop("fname", axis=1).values,
            val_predictions_df.drop("fname", axis=1).values)

        experiment.register_result("metric", metric)

    # submission

    test_df_files = [
        os.path.join(experiment.predictions,
                     "test_preds_fold_{}.csv".format(fold))
        for fold in range(config.data._n_folds)
    ]

    if all(os.path.isfile for file in test_df_files):
        test_dfs = [pd.read_csv(file) for file in test_df_files]
        submission_df = pd.DataFrame({"fname": test_dfs[0].fname.values})
                ]),
                clean_transform=Compose([
                    LoadAudio(),
                    MapLabels(class_map=class_map),
                ]),
            ),
            shuffle=False,
            batch_size=args.batch_size,
            collate_fn=make_collate_fn(
                {"signal": audio_transform.padding_value}),
            **loader_kwargs)

        model = TwoDimensionalCNNClassificationModel(experiment,
                                                     device=args.device)
        model.load_best_model(fold)
        model.eval()

        val_preds = model.predict(valid_loader, n_tta=args.n_tta)
        val_labels = np.array(
            [item["labels"] for item in valid_loader.dataset])

        all_labels[valid] = val_labels
        all_predictions[valid] = val_preds

        metric = lwlrap(val_labels, val_preds)
        print("Fold metric:", metric)

    metric = lwlrap(all_labels, all_predictions)

    print("\nOverall metric:", green(bold(metric)))
    def train_epoch(self, train_loader,
                    epoch, log_interval, write_summary=True):

        self.train()

        print(
            "\n" + " " * 10 + "****** Epoch {epoch} ******\n"
            .format(epoch=epoch)
        )

        training_losses = []

        history = deque(maxlen=30)

        self.optimizer.zero_grad()
        accumulated_loss = 0

        with tqdm(total=len(train_loader), ncols=80) as pb:

            for batch_idx, sample in enumerate(train_loader):

                self.global_step += 1

                make_step(self.scheduler, step=self.global_step)

                signal, labels, is_noisy = (
                    sample["signal"].to(self.device),
                    sample["labels"].to(self.device).float(),
                    sample["is_noisy"].to(self.device).float()
                )

                outputs = self(signal)

                class_logits = outputs["class_logits"]

                loss = (
                    lsep_loss(
                        class_logits,
                        labels,
                        average=False
                    )
                ) / self.config.train.accumulation_steps

                training_losses.extend(loss.data.cpu().numpy())
                loss = loss.mean()

                loss.backward()
                accumulated_loss += loss

                if batch_idx % self.config.train.accumulation_steps == 0:
                    self.optimizer.step()
                    accumulated_loss = 0
                    self.optimizer.zero_grad()

                probs = torch.sigmoid(class_logits).data.cpu().numpy()
                labels = labels.data.cpu().numpy()

                metric = lwlrap(labels, probs)
                history.append(metric)

                pb.update()
                pb.set_description(
                    "Loss: {:.4f}, Metric: {:.4f}".format(
                        loss.item(), np.mean(history)))

                if batch_idx % log_interval == 0:
                    self.add_scalar_summaries(
                        loss.item(), metric, self.train_writer, self.global_step)

                if batch_idx == 0:
                    self.add_image_summaries(
                        signal, self.global_step, self.train_writer)

        self.add_histogram_summaries(
            training_losses, self.train_writer, self.global_step)
Ejemplo n.º 5
0
def target(alphas, *args):
    prediction = np.sum([a * p for a, p in zip(alphas, prediction_values)],
                        axis=0)
    return -lwlrap(actual_labels, prediction)