def __init__(self, interp, taps=None, atten=100): gr.hier_block2.__init__(self, "pfb_interpolator_ccf", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_gr_complex)) self._interp = interp self._taps = taps if (taps is not None) and (len(taps) > 0): self._taps = taps else: # Create a filter that covers the full bandwidth of the input signal bw = 0.4 tb = 0.2 ripple = 0.99 made = False while not made: try: self._taps = optfir.low_pass(self._interp, self._interp, bw, bw+tb, ripple, atten) made = True except RuntimeError: ripple += 0.01 made = False print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple)) # Build in an exit strategy; if we've come this far, it ain't working. if(ripple >= 1.0): raise RuntimeError("optfir could not generate an appropriate filter.") self.pfb = filter.pfb_interpolator_ccf(self._interp, self._taps) self.connect(self, self.pfb) self.connect(self.pfb, self)
def __init__(self, rate, taps=None, flt_size=32, atten=100): gr.hier_block2.__init__(self, "pfb_arb_resampler_ccc", gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature self._rate = rate self._size = flt_size if (taps is not None) and (len(taps) > 0): self._taps = taps else: # Create a filter that covers the full bandwidth of the input signal bw = 0.4 tb = 0.2 ripple = 0.1 #self._taps = filter.firdes.low_pass_2(self._size, self._size, bw, tb, atten) made = False while not made: try: self._taps = optfir.low_pass(self._size, self._size, bw, bw+tb, ripple, atten) made = True except RuntimeError: ripple += 0.01 made = False print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple)) # Build in an exit strategy; if we've come this far, it ain't working. if(ripple >= 1.0): raise RuntimeError("optfir could not generate an appropriate filter.") self.pfb = filter.pfb_arb_resampler_ccc(self._rate, self._taps, self._size) #print "PFB has %d taps\n" % (len(self._taps),) self.connect(self, self.pfb) self.connect(self.pfb, self)
def __init__(self, n_chans, n_filterbanks=1, taps=None, outchans=None, atten=100, bw=1.0, tb=0.2, ripple=0.1): if n_filterbanks > n_chans: n_filterbanks = n_chans if outchans is None: outchans = range(n_chans) gr.hier_block2.__init__( self, "pfb_channelizer_hier_ccf", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(len(outchans), len(outchans), gr.sizeof_gr_complex)) if taps is None: taps = optfir.low_pass(1, n_chans, bw, bw+tb, ripple, atten) taps = list(taps) extra_taps = int(math.ceil(1.0*len(taps)/n_chans)*n_chans - len(taps)) taps = taps + [0] * extra_taps # Make taps for each channel chantaps = [list(reversed(taps[i: len(taps): n_chans])) for i in range(0, n_chans)] # Convert the input stream into a stream of vectors. self.s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, n_chans) # Create a mapping to separate out each filterbank (a group of channels to be processed together) # And a list of sets of taps for each filterbank. low_cpp = int(n_chans/n_filterbanks) extra = n_chans - low_cpp*n_filterbanks cpps = [low_cpp+1]*extra + [low_cpp]*(n_filterbanks-extra) splitter_mapping = [] filterbanktaps = [] total = 0 for cpp in cpps: splitter_mapping.append([(0, i) for i in range(total, total+cpp)]) filterbanktaps.append(chantaps[total: total+cpp]) total += cpp assert(total == n_chans) # Split the stream of vectors in n_filterbanks streams of vectors. self.splitter = blocks.vector_map(gr.sizeof_gr_complex, [n_chans], splitter_mapping) # Create the filterbanks self.fbs = [filter.filterbank_vcvcf(taps) for taps in filterbanktaps] # Combine the streams of vectors back into a single stream of vectors. combiner_mapping = [[]] for i, cpp in enumerate(cpps): for j in range(cpp): combiner_mapping[0].append((i, j)) self.combiner = blocks.vector_map(gr.sizeof_gr_complex, cpps, combiner_mapping) # Add the final FFT to the channelizer. self.fft = fft.fft_vcc(n_chans, forward=True, window=[1.0]*n_chans) # Select the desired channels if outchans != range(n_chans): selector_mapping = [[(0, i) for i in outchans]] self.selector = blocks.vector_map(gr.sizeof_gr_complex, [n_chans], selector_mapping) # Convert stream of vectors to a normal stream. self.v2ss = blocks.vector_to_streams(gr.sizeof_gr_complex, len(outchans)) self.connect(self, self.s2v, self.splitter) for i in range(0, n_filterbanks): self.connect((self.splitter, i), self.fbs[i], (self.combiner, i)) self.connect(self.combiner, self.fft) if outchans != range(n_chans): self.connect(self.fft, self.selector, self.v2ss) else: self.connect(self.fft, self.v2ss) for i in range(0, len(outchans)): self.connect((self.v2ss, i), (self, i))
def __init__(self, rate, taps=None, flt_size=32, atten=100): gr.hier_block2.__init__(self, "pfb_arb_resampler_fff", gr.io_signature(1, 1, gr.sizeof_float), # Input signature gr.io_signature(1, 1, gr.sizeof_float)) # Output signature self._rate = rate self._size = flt_size if (taps is not None) and (len(taps) > 0): self._taps = taps else: # Create a filter that covers the full bandwidth of the input signal bw = 0.4 tb = 0.2 ripple = 0.1 #self._taps = filter.firdes.low_pass_2(self._size, self._size, bw, tb, atten) made = False while not made: try: self._taps = optfir.low_pass(self._size, self._size, bw, bw+tb, ripple, atten) made = True except RuntimeError: ripple += 0.01 made = False print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple)) # Build in an exit strategy; if we've come this far, it ain't working. if(ripple >= 1.0): raise RuntimeError("optfir could not generate an appropriate filter.") self.pfb = filter.pfb_arb_resampler_fff(self._rate, self._taps, self._size) #print "PFB has %d taps\n" % (len(self._taps),) self.connect(self, self.pfb) self.connect(self.pfb, self)
def __init__(self, rate, taps=None, flt_size=32, atten=100): gr.hier_block2.__init__(self, "pfb_arb_resampler_fff", gr.io_signature(1, 1, gr.sizeof_float), # Input signature gr.io_signature(1, 1, gr.sizeof_float)) # Output signature self._rate = rate self._size = flt_size if (taps is not None) and (len(taps) > 0): self._taps = taps else: # Create a filter that covers the full bandwidth of the input signal # If rate >= 1, we need to prevent images in the output, # so we have to filter it to less than half the channel # width of 0.5. If rate < 1, we need to filter to less # than half the output signal's bw to avoid aliasing, so # the half-band here is 0.5*rate. percent = 0.80 if(self._rate < 1): halfband = 0.5*self._rate bw = percent*halfband tb = (percent/2.0)*halfband ripple = 0.1 # As we drop the bw factor, the optfir filter has a harder time converging; # using the firdes method here for better results. self._taps = filter.firdes.low_pass_2(self._size, self._size, bw, tb, atten, filter.firdes.WIN_BLACKMAN_HARRIS) else: halfband = 0.5 bw = percent*halfband tb = (percent/2.0)*halfband ripple = 0.1 made = False while not made: try: self._taps = optfir.low_pass(self._size, self._size, bw, bw+tb, ripple, atten) made = True except RuntimeError: ripple += 0.01 made = False print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple)) # Build in an exit strategy; if we've come this far, it ain't working. if(ripple >= 1.0): raise RuntimeError("optfir could not generate an appropriate filter.") self.pfb = filter.pfb_arb_resampler_fff(self._rate, self._taps, self._size) #print "PFB has %d taps\n" % (len(self._taps),) self.connect(self, self.pfb) self.connect(self.pfb, self)
def __init__(self, decim, taps=None, channel=0, atten=100, use_fft_rotators=True, use_fft_filters=True): gr.hier_block2.__init__(self, "pfb_decimator_ccf", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_gr_complex)) self._decim = decim self._channel = channel if (taps is not None) and (len(taps) > 0): self._taps = taps else: # Create a filter that covers the full bandwidth of the input signal bw = 0.4 tb = 0.2 ripple = 0.1 made = False while not made: try: self._taps = optfir.low_pass(1, self._decim, bw, bw + tb, ripple, atten) made = True except RuntimeError: ripple += 0.01 made = False print( "Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple)) # Build in an exit strategy; if we've come this far, it ain't working. if (ripple >= 1.0): raise RuntimeError( "optfir could not generate an appropriate filter.") self.s2ss = blocks.stream_to_streams(gr.sizeof_gr_complex, self._decim) self.pfb = filter.pfb_decimator_ccf(self._decim, self._taps, self._channel, use_fft_rotators, use_fft_filters) self.connect(self, self.s2ss) for i in xrange(self._decim): self.connect((self.s2ss, i), (self.pfb, i)) self.connect(self.pfb, self)
def __init__(self, numchans, taps=None, oversample_rate=1, atten=100): gr.hier_block2.__init__( self, "pfb_channelizer_ccf", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(numchans, numchans, gr.sizeof_gr_complex)) self._nchans = numchans self._oversample_rate = oversample_rate if taps is not None: self._taps = taps else: # Create a filter that covers the full bandwidth of the input signal bw = 0.4 tb = 0.2 ripple = 0.1 made = False while not made: try: self._taps = optfir.low_pass(1, self._nchans, bw, bw + tb, ripple, atten) made = True except RuntimeError: ripple += 0.01 made = False print( "Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple)) # Build in an exit strategy; if we've come this far, it ain't working. if (ripple >= 1.0): raise RuntimeError( "optfir could not generate an appropriate filter.") self.s2ss = gr.stream_to_streams(gr.sizeof_gr_complex, self._nchans) self.pfb = filter.pfb_channelizer_ccf(self._nchans, self._taps, self._oversample_rate) self.connect(self, self.s2ss) for i in xrange(self._nchans): self.connect((self.s2ss, i), (self.pfb, i)) self.connect((self.pfb, i), (self, i))
def __init__(self, decim, taps=None, channel=0, atten=100, use_fft_rotators=True, use_fft_filters=True): gr.hier_block2.__init__(self, "pfb_decimator_ccf", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(1, 1, gr.sizeof_gr_complex)) self._decim = decim self._channel = channel if (taps is not None) and (len(taps) > 0): self._taps = taps else: # Create a filter that covers the full bandwidth of the input signal bw = 0.4 tb = 0.2 ripple = 0.1 made = False while not made: try: self._taps = optfir.low_pass(1, self._decim, bw, bw+tb, ripple, atten) made = True except RuntimeError: ripple += 0.01 made = False print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple)) # Build in an exit strategy; if we've come this far, it ain't working. if(ripple >= 1.0): raise RuntimeError("optfir could not generate an appropriate filter.") self.s2ss = blocks.stream_to_streams(gr.sizeof_gr_complex, self._decim) self.pfb = filter.pfb_decimator_ccf(self._decim, self._taps, self._channel, use_fft_rotators, use_fft_filters) self.connect(self, self.s2ss) for i in xrange(self._decim): self.connect((self.s2ss,i), (self.pfb,i)) self.connect(self.pfb, self)
def __init__(self, numchans, taps=None, oversample_rate=1, atten=100): gr.hier_block2.__init__(self, "pfb_channelizer_ccf", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(numchans, numchans, gr.sizeof_gr_complex)) self._nchans = numchans self._oversample_rate = oversample_rate if taps is not None: self._taps = taps else: # Create a filter that covers the full bandwidth of the input signal bw = 0.4 tb = 0.2 ripple = 0.1 made = False while not made: try: self._taps = optfir.low_pass(1, self._nchans, bw, bw+tb, ripple, atten) made = True except RuntimeError: ripple += 0.01 made = False print("Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple)) # Build in an exit strategy; if we've come this far, it ain't working. if(ripple >= 1.0): raise RuntimeError("optfir could not generate an appropriate filter.") self.s2ss = gr.stream_to_streams(gr.sizeof_gr_complex, self._nchans) self.pfb = filter.pfb_channelizer_ccf(self._nchans, self._taps, self._oversample_rate) self.connect(self, self.s2ss) for i in xrange(self._nchans): self.connect((self.s2ss,i), (self.pfb,i)) self.connect((self.pfb,i), (self,i))
def __init__(self, n_chans, n_filterbanks=1, taps=None, outchans=None, atten=100, bw=1.0, tb=0.2, ripple=0.1): if n_filterbanks > n_chans: n_filterbanks = n_chans if outchans is None: outchans = range(n_chans) gr.hier_block2.__init__( self, "pfb_channelizer_hier_ccf", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(len(outchans), len(outchans), gr.sizeof_gr_complex)) if taps is None: taps = optfir.low_pass(1, n_chans, bw, bw + tb, ripple, atten) taps = list(taps) extra_taps = int( math.ceil(1.0 * len(taps) / n_chans) * n_chans - len(taps)) taps = taps + [0] * extra_taps # Make taps for each channel chantaps = [ list(reversed(taps[i:len(taps):n_chans])) for i in range(0, n_chans) ] # Convert the input stream into a stream of vectors. self.s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, n_chans) # Create a mapping to separate out each filterbank (a group of channels to be processed together) # And a list of sets of taps for each filterbank. low_cpp = int(n_chans / n_filterbanks) extra = n_chans - low_cpp * n_filterbanks cpps = [low_cpp + 1] * extra + [low_cpp] * (n_filterbanks - extra) splitter_mapping = [] filterbanktaps = [] total = 0 for cpp in cpps: splitter_mapping.append([(0, i) for i in range(total, total + cpp)]) filterbanktaps.append(chantaps[total:total + cpp]) total += cpp assert (total == n_chans) # Split the stream of vectors in n_filterbanks streams of vectors. self.splitter = blocks.vector_map(gr.sizeof_gr_complex, [n_chans], splitter_mapping) # Create the filterbanks self.fbs = [filter.filterbank_vcvcf(taps) for taps in filterbanktaps] # Combine the streams of vectors back into a single stream of vectors. combiner_mapping = [[]] for i, cpp in enumerate(cpps): for j in range(cpp): combiner_mapping[0].append((i, j)) self.combiner = blocks.vector_map(gr.sizeof_gr_complex, cpps, combiner_mapping) # Add the final FFT to the channelizer. self.fft = fft.fft_vcc(n_chans, forward=True, window=[1.0] * n_chans) # Select the desired channels if outchans != range(n_chans): selector_mapping = [[(0, i) for i in outchans]] self.selector = blocks.vector_map(gr.sizeof_gr_complex, [n_chans], selector_mapping) # Convert stream of vectors to a normal stream. self.v2ss = blocks.vector_to_streams(gr.sizeof_gr_complex, len(outchans)) self.connect(self, self.s2v, self.splitter) for i in range(0, n_filterbanks): self.connect((self.splitter, i), self.fbs[i], (self.combiner, i)) self.connect(self.combiner, self.fft) if outchans != range(n_chans): self.connect(self.fft, self.selector, self.v2ss) else: self.connect(self.fft, self.v2ss) for i in range(0, len(outchans)): self.connect((self.v2ss, i), (self, i))
def __init__(self, rate, taps=None, flt_size=32, atten=100): gr.hier_block2.__init__( self, "pfb_arb_resampler_fff", gr.io_signature(1, 1, gr.sizeof_float), # Input signature gr.io_signature(1, 1, gr.sizeof_float)) # Output signature self._rate = rate self._size = flt_size if (taps is not None) and (len(taps) > 0): self._taps = taps else: # Create a filter that covers the full bandwidth of the input signal # If rate >= 1, we need to prevent images in the output, # so we have to filter it to less than half the channel # width of 0.5. If rate < 1, we need to filter to less # than half the output signal's bw to avoid aliasing, so # the half-band here is 0.5*rate. percent = 0.80 if (self._rate < 1): halfband = 0.5 * self._rate bw = percent * halfband tb = (percent / 2.0) * halfband ripple = 0.1 # As we drop the bw factor, the optfir filter has a harder time converging; # using the firdes method here for better results. self._taps = filter.firdes.low_pass_2( self._size, self._size, bw, tb, atten, filter.firdes.WIN_BLACKMAN_HARRIS) else: halfband = 0.5 bw = percent * halfband tb = (percent / 2.0) * halfband ripple = 0.1 made = False while not made: try: self._taps = optfir.low_pass(self._size, self._size, bw, bw + tb, ripple, atten) made = True except RuntimeError: ripple += 0.01 made = False print( "Warning: set ripple to %.4f dB. If this is a problem, adjust the attenuation or create your own filter taps." % (ripple)) # Build in an exit strategy; if we've come this far, it ain't working. if (ripple >= 1.0): raise RuntimeError( "optfir could not generate an appropriate filter." ) self.pfb = filter.pfb_arb_resampler_fff(self._rate, self._taps, self._size) #print "PFB has %d taps\n" % (len(self._taps),) self.connect(self, self.pfb) self.connect(self.pfb, self)