def compile_functions(self, freeze=False): """ Compile all functions defined as strings. If freeze is True, all external parameters and units are replaced by their value. ALL FUNCTIONS MUST HAVE STRINGS. """ all_variables = self._eq_names + self._diffeq_names + self._alias.keys( ) + ['t'] # Check if freezable freeze = freeze and all([optimiser.freeze(expr, all_variables, self._namespace[name])\ for name, expr in self._string.iteritems()]) self._frozen = freeze # Compile strings to functions for name, expr in self._string.iteritems(): namespace = self._namespace[name] # name space of the function # Find variables vars = [ var for var in get_identifiers(expr) if var in all_variables ] if freeze: expr = optimiser.freeze(expr, all_variables, namespace) #self._string[name]=expr # should we? #namespace={} s = "lambda " + ','.join(vars) + ":" + expr self._function[name] = eval(s, namespace)
def exponential_euler_code(self): ''' Generates Python code for an exponential Euler step. Not efficient for the moment! ''' all_variables = self._eq_names + self._diffeq_names + self._alias.keys() + ['t'] vars_tmp = [name + '__tmp' for name in self._diffeq_names] lines = ','.join(self._diffeq_names) + '=P._S\n' lines += ','.join(vars_tmp) + '=P._dS\n' for name in self._diffeq_names: # Freeze namespace = self._namespace[name] expr = optimiser.freeze(self._string[name], all_variables, namespace) # Find a and b in dx/dt=a*x+b sym_expr = symbolic_eval(expr) if isinstance(sym_expr, float): lines += name + '__tmp[:]=' + name + '+(' + str(expr) + ')*dt\n' else: sym_expr = sym_expr.expand() sname = sympy.Symbol(name) terms = sympy.collect(sym_expr, name, evaluate=False) if sname ** 0 in terms: b = terms[sname ** 0] else: b = 0 if sname in terms: a = terms[sname] else: a = 0 lines += name + '__tmp[:]=' + str(-b / a + (sname + b / a) * sympy.exp(a * sympy.Symbol('dt'))) + '\n' lines += 'P._S[:]=P._dS' #print lines return compile(lines, 'Exponential Euler update code', 'exec')
def compile_functions(self, freeze=False): """ Compile all functions defined as strings. If freeze is True, all external parameters and units are replaced by their value. ALL FUNCTIONS MUST HAVE STRINGS. """ all_variables = self._eq_names + self._diffeq_names + self._alias.keys() + ['t'] # Check if freezable freeze = freeze and all([optimiser.freeze(expr, all_variables, self._namespace[name])\ for name, expr in self._string.iteritems()]) self._frozen = freeze # Compile strings to functions for name, expr in self._string.iteritems(): namespace = self._namespace[name] # name space of the function # Find variables vars = [var for var in get_identifiers(expr) if var in all_variables] if freeze: expr = optimiser.freeze(expr, all_variables, namespace) #self._string[name]=expr # should we? #namespace={} s = "lambda " + ','.join(vars) + ":" + expr self._function[name] = eval(s, namespace)
def forward_euler_code(self): ''' Generates Python code for a forward Euler step. ''' # TODO: check if it can really be frozen # TODO: change /a to *(1/a) with precalculation (use parser) all_variables = self._eq_names + self._diffeq_names + self._alias.keys() + ['t'] # nonzero? insert dt? vars_tmp = [name + '__tmp' for name in self._diffeq_names] lines = ','.join(self._diffeq_names) + '=P._S\n' lines += ','.join(vars_tmp) + '=P._dS\n' for name in self._diffeq_names_nonzero: namespace = self._namespace[name] expr = optimiser.freeze(self._string[name], all_variables, namespace) lines += name + '__tmp[:]=' + expr + '\n' lines += 'P._S+=dt*P._dS\n' #print lines return compile(lines, 'Euler update code', 'exec')
def __init__(self, C, eqs, pre, post, wmin=0, wmax=Inf, level=0, clock=None, delay_pre=None, delay_post=None): ''' C: connection object eqs: differential equations (with units) pre: Python code for presynaptic spikes post: Python code for postsynaptic spikes wmax: maximum weight (default unlimited) delay_pre: presynaptic delay delay_post: postsynaptic delay (backward propagating spike) ''' if get_global_preference('usecstdp') and get_global_preference( 'useweave'): from experimental.c_stdp import CSTDP log_warn('brian.stdp', 'Using experimental C STDP class.') self.__class__ = CSTDP CSTDP.__init__(self, C, eqs, pre, post, wmin=wmin, wmax=wmax, level=level + 1, clock=clock, delay_pre=delay_pre, delay_post=delay_post) return NetworkOperation.__init__(self, lambda: None, clock=clock) # Convert to equations object if isinstance(eqs, Equations): eqs_obj = eqs else: eqs_obj = Equations(eqs, level=level + 1) # handle multi-line pre, post equations and multi-statement equations separated by ; if '\n' in pre: pre = flattened_docstring(pre) elif ';' in pre: pre = '\n'.join([line.strip() for line in pre.split(';')]) if '\n' in post: post = flattened_docstring(post) elif ';' in post: post = '\n'.join([line.strip() for line in post.split(';')]) # Check units eqs_obj.compile_functions() eqs_obj.check_units() # Get variable names vars = eqs_obj._diffeq_names # Find which ones are directly modified (e.g. regular expression matching; careful with comments) vars_pre = [var for var in vars if var in modified_variables(pre)] vars_post = [var for var in vars if var in modified_variables(post)] # additional dependencies are used to ensure that if there are multiple # pre/post separated equations they are grouped together as one # # We should replace with this code here, in case there are no pre/post synaptic variables #additional_deps =[] #if len(vars_pre)>0: # additional_deps.append('__pre_deps='+'+'.join(vars_pre)) #if len(vars_post)>0: # additional_deps.append('__post_deps='+'+'.join(vars_post)) additional_deps = [ '__pre_deps=' + '+'.join(vars_pre), '__post_deps=' + '+'.join(vars_post) ] separated_equations = separate_equations(eqs_obj, additional_deps) if not len(separated_equations) == 2: raise ValueError( 'Equations should separate into pre and postsynaptic variables.' ) sep_pre, sep_post = separated_equations for v in vars_pre: if v in sep_post._diffeq_names: sep_pre, sep_post = sep_post, sep_pre break index_pre = [ i for i in range(len(vars)) if vars[i] in vars_pre or vars[i] in sep_pre._diffeq_names ] index_post = [ i for i in range(len(vars)) if vars[i] in vars_post or vars[i] in sep_post._diffeq_names ] vars_pre = array(vars)[index_pre] vars_post = array(vars)[index_post] # Check pre/post consistency shared_vars = set(vars_pre).intersection(vars_post) if shared_vars != set([]): raise Exception, str( list(shared_vars)) + " are both presynaptic and postsynaptic!" # Substitute equations/aliases into pre/post code def substitute_eqs(code): for name in sep_pre._eq_names[-1::-1] + sep_post._eq_names[ -1::-1]: # reverse order, as in equations.py if name in sep_pre._eq_names: expr = sep_pre._string[name] else: expr = sep_post._string[name] code = re.sub("\\b" + name + "\\b", '(' + expr + ')', code) return code pre = substitute_eqs(pre) post = substitute_eqs(post) # Create namespaces for pre and post codes pre_namespace = namespace(pre, level=level + 1) post_namespace = namespace(post, level=level + 1) pre_namespace['clip'] = clip post_namespace['clip'] = clip pre_namespace['Inf'] = Inf post_namespace['Inf'] = Inf pre_namespace['enumerate'] = enumerate post_namespace['enumerate'] = enumerate # freeze pre and post (otherwise units will cause problems) all_vars = list(vars_pre) + list(vars_post) + ['w'] pre = '\n'.join( freeze(line.strip(), all_vars, pre_namespace) for line in pre.split('\n')) post = '\n'.join( freeze(line.strip(), all_vars, post_namespace) for line in post.split('\n')) # Neuron groups G_pre = NeuronGroup(len(C.source), model=sep_pre, clock=self.clock) G_post = NeuronGroup(len(C.target), model=sep_post, clock=self.clock) G_pre._S[:] = 0 G_post._S[:] = 0 self.pre_group = G_pre self.post_group = G_post var_group = {} # maps variable name to group for v in vars_pre: var_group[v] = G_pre for v in vars_post: var_group[v] = G_post self.var_group = var_group # Create updaters and monitors if isinstance(C, DelayConnection): G_pre_monitors = {} # these get values put in them later G_post_monitors = {} max_delay = C._max_delay * C.target.clock.dt def gencode(incode, vars, other_vars, wreplacement): num_immediate = num_delayed = 0 reordering_warning = False incode_lines = [line.strip() for line in incode.split('\n')] outcode_immediate = 'for _i in spikes:\n' # delayed variables outcode_delayed = 'for _j, _i in enumerate(spikes):\n' for var in other_vars: outcode_delayed += ' ' + var + '__delayed = ' + var + '__delayed_values_seq[_j]\n' for line in incode_lines: if not line.strip(): continue m = re.search( r'\bw\b\s*[^><=]?=', line) # lines of the form w = ..., w *= ..., etc. for var in vars: line = re.sub(r'\b' + var + r'\b', var + '[_i]', line) for var in other_vars: line = re.sub(r'\b' + var + r'\b', var + '__delayed', line) if m: num_delayed += 1 outcode_delayed += ' ' + line + '\n' else: if num_delayed != 0 and not reordering_warning: log_warn( 'brian.stdp', 'STDP operations are being re-ordered for delay connection, results may be wrong.' ) reordering_warning = True num_immediate += 1 outcode_immediate += ' ' + line + '\n' outcode_delayed = re.sub(r'\bw\b', wreplacement, outcode_delayed) outcode_delayed += '\n %(w)s = clip(%(w)s, %(min)e, %(max)e)' % { 'min': wmin, 'max': wmax, 'w': wreplacement } return (outcode_immediate, outcode_delayed) pre_immediate, pre_delayed = gencode(pre, vars_pre, vars_post, 'w[_i,:]') post_immediate, post_delayed = gencode(post, vars_post, vars_pre, 'w[:,_i]') log_debug('brian.stdp', 'PRE CODE IMMEDIATE:\n' + pre_immediate) log_debug('brian.stdp', 'PRE CODE DELAYED:\n' + pre_delayed) log_debug('brian.stdp', 'POST CODE:\n' + post_immediate + post_delayed) pre_delay_expr = 'max_delay-d' post_delay_expr = 'd' pre_code_immediate = compile(pre_immediate, "Presynaptic code immediate", "exec") pre_code_delayed = compile(pre_delayed, "Presynaptic code delayed", "exec") post_code = compile(post_immediate + post_delayed, "Postsynaptic code", "exec") if delay_pre is not None or delay_post is not None: raise ValueError( "Must use delay_pre=delay_post=None for the moment.") max_delay = C._max_delay * C.target.clock.dt # Ensure that the source and target neuron spikes are kept for at least the # DelayConnection's maximum delay C.source.set_max_delay(max_delay) C.target.set_max_delay(max_delay) # create forward and backward Connection objects or SpikeMonitor objects pre_updater_immediate = STDPUpdater(C.source, C, vars=vars_pre, code=pre_code_immediate, namespace=pre_namespace, delay=0 * ms) pre_updater_delayed = DelayedSTDPUpdater( C, reverse=False, delay_expr=pre_delay_expr, max_delay=max_delay, vars=vars_pre, other_vars=vars_post, varmon=G_pre_monitors, othervarmon=G_post_monitors, code=pre_code_delayed, namespace=pre_namespace, delay=max_delay) post_updater = DelayedSTDPUpdater(C, reverse=True, delay_expr=post_delay_expr, max_delay=max_delay, vars=vars_post, other_vars=vars_pre, varmon=G_post_monitors, othervarmon=G_pre_monitors, code=post_code, namespace=post_namespace, delay=0 * ms) updaters = [ pre_updater_immediate, pre_updater_delayed, post_updater ] self.contained_objects += updaters vars_pre_ind = dict((var, i) for i, var in enumerate(vars_pre)) vars_post_ind = dict((var, i) for i, var in enumerate(vars_post)) self.G_pre_monitors = G_pre_monitors self.G_post_monitors = G_post_monitors self.G_pre_monitors.update( ((var, RecentStateMonitor(G_pre, vars_pre_ind[var], duration=(C._max_delay + 1) * C.target.clock.dt, clock=G_pre.clock)) for var in vars_pre)) self.G_post_monitors.update( ((var, RecentStateMonitor( G_post, vars_post_ind[var], duration=(C._max_delay + 1) * C.target.clock.dt, clock=G_post.clock)) for var in vars_post)) self.contained_objects += self.G_pre_monitors.values() self.contained_objects += self.G_post_monitors.values() else: # Indent and loop pre = re.compile('^', re.M).sub(' ', pre) post = re.compile('^', re.M).sub(' ', post) pre = 'for _i in spikes:\n' + pre post = 'for _i in spikes:\n' + post # Pre code for var in vars_pre: # presynaptic variables (vectorisation) pre = re.sub(r'\b' + var + r'\b', var + '[_i]', pre) pre = re.sub(r'\bw\b', 'w[_i,:]', pre) # synaptic weight # Post code for var in vars_post: # postsynaptic variables (vectorisation) post = re.sub(r'\b' + var + r'\b', var + '[_i]', post) post = re.sub(r'\bw\b', 'w[:,_i]', post) # synaptic weight # Bounds: add one line to pre/post code (clip(w,min,max,w)) # or actual code? (rather than compiled string) if wmax == Inf: pre += '\n w[_i,:]=clip(w[_i,:],%(min)e,Inf)' % { 'min': wmin } post += '\n w[:,_i]=clip(w[:,_i],%(min)e,Inf)' % { 'min': wmin } else: pre += '\n w[_i,:]=clip(w[_i,:],%(min)e,%(max)e)' % { 'min': wmin, 'max': wmax } post += '\n w[:,_i]=clip(w[:,_i],%(min)e,%(max)e)' % { 'min': wmin, 'max': wmax } log_debug('brian.stdp', 'PRE CODE:\n' + pre) log_debug('brian.stdp', 'POST CODE:\n' + post) # Compile code pre_code = compile(pre, "Presynaptic code", "exec") post_code = compile(post, "Postsynaptic code", "exec") connection_delay = C.delay * C.source.clock.dt if (delay_pre is None) and ( delay_post is None): # same delays as the Connnection C delay_pre = connection_delay delay_post = 0 * ms elif delay_pre is None: delay_pre = connection_delay - delay_post if delay_pre < 0 * ms: raise AttributeError, "Presynaptic delay is too large" elif delay_post is None: delay_post = connection_delay - delay_pre if delay_post < 0 * ms: raise AttributeError, "Postsynaptic delay is too large" # create forward and backward Connection objects or SpikeMonitor objects pre_updater = STDPUpdater(C.source, C, vars=vars_pre, code=pre_code, namespace=pre_namespace, delay=delay_pre) post_updater = STDPUpdater(C.target, C, vars=vars_post, code=post_code, namespace=post_namespace, delay=delay_post) updaters = [pre_updater, post_updater] self.contained_objects += [pre_updater, post_updater] # Put variables in namespaces for i, var in enumerate(vars_pre): for updater in updaters: updater._namespace[var] = G_pre._S[i] for i, var in enumerate(vars_post): for updater in updaters: updater._namespace[var] = G_post._S[i] self.contained_objects += [G_pre, G_post]
def __init__(self, C, eqs, pre, post, wmin=0, wmax=Inf, level=0, clock=None, delay_pre=None, delay_post=None): ''' C: connection object eqs: differential equations (with units) pre: Python code for presynaptic spikes post: Python code for postsynaptic spikes wmax: maximum weight (default unlimited) delay_pre: presynaptic delay delay_post: postsynaptic delay (backward propagating spike) ''' if get_global_preference('usecstdp') and get_global_preference('useweave'): from experimental.c_stdp import CSTDP log_warn('brian.stdp', 'Using experimental C STDP class.') self.__class__ = CSTDP CSTDP.__init__(self, C, eqs, pre, post, wmin=wmin, wmax=wmax, level=level + 1, clock=clock, delay_pre=delay_pre, delay_post=delay_post) return NetworkOperation.__init__(self, lambda:None, clock=clock) # Convert to equations object if isinstance(eqs, Equations): eqs_obj = eqs else: eqs_obj = Equations(eqs, level=level + 1) # handle multi-line pre, post equations and multi-statement equations separated by ; if '\n' in pre: pre = flattened_docstring(pre) elif ';' in pre: pre = '\n'.join([line.strip() for line in pre.split(';')]) if '\n' in post: post = flattened_docstring(post) elif ';' in post: post = '\n'.join([line.strip() for line in post.split(';')]) # Check units eqs_obj.compile_functions() eqs_obj.check_units() # Get variable names vars = eqs_obj._diffeq_names # Find which ones are directly modified (e.g. regular expression matching; careful with comments) vars_pre = [var for var in vars if var in modified_variables(pre)] vars_post = [var for var in vars if var in modified_variables(post)] # additional dependencies are used to ensure that if there are multiple # pre/post separated equations they are grouped together as one # # We should replace with this code here, in case there are no pre/post synaptic variables #additional_deps =[] #if len(vars_pre)>0: # additional_deps.append('__pre_deps='+'+'.join(vars_pre)) #if len(vars_post)>0: # additional_deps.append('__post_deps='+'+'.join(vars_post)) additional_deps = ['__pre_deps='+'+'.join(vars_pre), '__post_deps='+'+'.join(vars_post)] separated_equations = separate_equations(eqs_obj, additional_deps) if not len(separated_equations) == 2: raise ValueError('Equations should separate into pre and postsynaptic variables.') sep_pre, sep_post = separated_equations for v in vars_pre: if v in sep_post._diffeq_names: sep_pre, sep_post = sep_post, sep_pre break index_pre = [i for i in range(len(vars)) if vars[i] in vars_pre or vars[i] in sep_pre._diffeq_names] index_post = [i for i in range(len(vars)) if vars[i] in vars_post or vars[i] in sep_post._diffeq_names] vars_pre = array(vars)[index_pre] vars_post = array(vars)[index_post] # Check pre/post consistency shared_vars = set(vars_pre).intersection(vars_post) if shared_vars != set([]): raise Exception, str(list(shared_vars)) + " are both presynaptic and postsynaptic!" # Substitute equations/aliases into pre/post code def substitute_eqs(code): for name in sep_pre._eq_names[-1::-1]+sep_post._eq_names[-1::-1]: # reverse order, as in equations.py if name in sep_pre._eq_names: expr = sep_pre._string[name] else: expr = sep_post._string[name] code = re.sub("\\b" + name + "\\b", '(' + expr + ')', code) return code pre = substitute_eqs(pre) post = substitute_eqs(post) # Create namespaces for pre and post codes pre_namespace = namespace(pre, level=level + 1) post_namespace = namespace(post, level=level + 1) pre_namespace['clip'] = clip post_namespace['clip'] = clip pre_namespace['Inf'] = Inf post_namespace['Inf'] = Inf pre_namespace['enumerate'] = enumerate post_namespace['enumerate'] = enumerate # freeze pre and post (otherwise units will cause problems) all_vars = list(vars_pre) + list(vars_post) + ['w'] pre = '\n'.join(freeze(line.strip(), all_vars, pre_namespace) for line in pre.split('\n')) post = '\n'.join(freeze(line.strip(), all_vars, post_namespace) for line in post.split('\n')) # Neuron groups G_pre = NeuronGroup(len(C.source), model=sep_pre, clock=self.clock) G_post = NeuronGroup(len(C.target), model=sep_post, clock=self.clock) G_pre._S[:] = 0 G_post._S[:] = 0 self.pre_group = G_pre self.post_group = G_post var_group = {} # maps variable name to group for v in vars_pre: var_group[v] = G_pre for v in vars_post: var_group[v] = G_post self.var_group = var_group # Create updaters and monitors if isinstance(C, DelayConnection): G_pre_monitors = {} # these get values put in them later G_post_monitors = {} max_delay = C._max_delay * C.target.clock.dt def gencode(incode, vars, other_vars, wreplacement): num_immediate = num_delayed = 0 reordering_warning = False incode_lines = [line.strip() for line in incode.split('\n')] outcode_immediate = 'for _i in spikes:\n' # delayed variables outcode_delayed = 'for _j, _i in enumerate(spikes):\n' for var in other_vars: outcode_delayed += ' ' + var + '__delayed = ' + var + '__delayed_values_seq[_j]\n' for line in incode_lines: if not line.strip(): continue m = re.search(r'\bw\b\s*[^><=]?=', line) # lines of the form w = ..., w *= ..., etc. for var in vars: line = re.sub(r'\b' + var + r'\b', var + '[_i]', line) for var in other_vars: line = re.sub(r'\b' + var + r'\b', var + '__delayed', line) if m: num_delayed += 1 outcode_delayed += ' ' + line + '\n' else: if num_delayed!=0 and not reordering_warning: log_warn('brian.stdp', 'STDP operations are being re-ordered for delay connection, results may be wrong.') reordering_warning = True num_immediate += 1 outcode_immediate += ' ' + line + '\n' outcode_delayed = re.sub(r'\bw\b', wreplacement, outcode_delayed) outcode_delayed += '\n %(w)s = clip(%(w)s, %(min)e, %(max)e)' % {'min':wmin, 'max':wmax, 'w':wreplacement} return (outcode_immediate, outcode_delayed) pre_immediate, pre_delayed = gencode(pre, vars_pre, vars_post, 'w[_i,:]') post_immediate, post_delayed = gencode(post, vars_post, vars_pre, 'w[:,_i]') log_debug('brian.stdp', 'PRE CODE IMMEDIATE:\n'+pre_immediate) log_debug('brian.stdp', 'PRE CODE DELAYED:\n'+pre_delayed) log_debug('brian.stdp', 'POST CODE:\n'+post_immediate+post_delayed) pre_delay_expr = 'max_delay-d' post_delay_expr = 'd' pre_code_immediate = compile(pre_immediate, "Presynaptic code immediate", "exec") pre_code_delayed = compile(pre_delayed, "Presynaptic code delayed", "exec") post_code = compile(post_immediate + post_delayed, "Postsynaptic code", "exec") if delay_pre is not None or delay_post is not None: raise ValueError("Must use delay_pre=delay_post=None for the moment.") max_delay = C._max_delay * C.target.clock.dt # Ensure that the source and target neuron spikes are kept for at least the # DelayConnection's maximum delay C.source.set_max_delay(max_delay) C.target.set_max_delay(max_delay) # create forward and backward Connection objects or SpikeMonitor objects pre_updater_immediate = STDPUpdater(C.source, C, vars=vars_pre, code=pre_code_immediate, namespace=pre_namespace, delay=0 * ms) pre_updater_delayed = DelayedSTDPUpdater(C, reverse=False, delay_expr=pre_delay_expr, max_delay=max_delay, vars=vars_pre, other_vars=vars_post, varmon=G_pre_monitors, othervarmon=G_post_monitors, code=pre_code_delayed, namespace=pre_namespace, delay=max_delay) post_updater = DelayedSTDPUpdater(C, reverse=True, delay_expr=post_delay_expr, max_delay=max_delay, vars=vars_post, other_vars=vars_pre, varmon=G_post_monitors, othervarmon=G_pre_monitors, code=post_code, namespace=post_namespace, delay=0 * ms) updaters = [pre_updater_immediate, pre_updater_delayed, post_updater] self.contained_objects += updaters vars_pre_ind = dict((var, i) for i, var in enumerate(vars_pre)) vars_post_ind = dict((var, i) for i, var in enumerate(vars_post)) self.G_pre_monitors = G_pre_monitors self.G_post_monitors = G_post_monitors self.G_pre_monitors.update(((var, RecentStateMonitor(G_pre, vars_pre_ind[var], duration=(C._max_delay + 1) * C.target.clock.dt, clock=G_pre.clock)) for var in vars_pre)) self.G_post_monitors.update(((var, RecentStateMonitor(G_post, vars_post_ind[var], duration=(C._max_delay + 1) * C.target.clock.dt, clock=G_post.clock)) for var in vars_post)) self.contained_objects += self.G_pre_monitors.values() self.contained_objects += self.G_post_monitors.values() else: # Indent and loop pre = re.compile('^', re.M).sub(' ', pre) post = re.compile('^', re.M).sub(' ', post) pre = 'for _i in spikes:\n' + pre post = 'for _i in spikes:\n' + post # Pre code for var in vars_pre: # presynaptic variables (vectorisation) pre = re.sub(r'\b' + var + r'\b', var + '[_i]', pre) pre = re.sub(r'\bw\b', 'w[_i,:]', pre) # synaptic weight # Post code for var in vars_post: # postsynaptic variables (vectorisation) post = re.sub(r'\b' + var + r'\b', var + '[_i]', post) post = re.sub(r'\bw\b', 'w[:,_i]', post) # synaptic weight # Bounds: add one line to pre/post code (clip(w,min,max,w)) # or actual code? (rather than compiled string) if wmax==Inf: pre += '\n w[_i,:]=clip(w[_i,:],%(min)e,Inf)' % {'min':wmin} post += '\n w[:,_i]=clip(w[:,_i],%(min)e,Inf)' % {'min':wmin} else: pre += '\n w[_i,:]=clip(w[_i,:],%(min)e,%(max)e)' % {'min':wmin, 'max':wmax} post += '\n w[:,_i]=clip(w[:,_i],%(min)e,%(max)e)' % {'min':wmin, 'max':wmax} log_debug('brian.stdp', 'PRE CODE:\n'+pre) log_debug('brian.stdp', 'POST CODE:\n'+post) # Compile code pre_code = compile(pre, "Presynaptic code", "exec") post_code = compile(post, "Postsynaptic code", "exec") connection_delay = C.delay * C.source.clock.dt if (delay_pre is None) and (delay_post is None): # same delays as the Connnection C delay_pre = connection_delay delay_post = 0 * ms elif delay_pre is None: delay_pre = connection_delay - delay_post if delay_pre < 0 * ms: raise AttributeError, "Presynaptic delay is too large" elif delay_post is None: delay_post = connection_delay - delay_pre if delay_post < 0 * ms: raise AttributeError, "Postsynaptic delay is too large" # create forward and backward Connection objects or SpikeMonitor objects pre_updater = STDPUpdater(C.source, C, vars=vars_pre, code=pre_code, namespace=pre_namespace, delay=delay_pre) post_updater = STDPUpdater(C.target, C, vars=vars_post, code=post_code, namespace=post_namespace, delay=delay_post) updaters = [pre_updater, post_updater] self.contained_objects += [pre_updater, post_updater] # Put variables in namespaces for i, var in enumerate(vars_pre): for updater in updaters: updater._namespace[var] = G_pre._S[i] for i, var in enumerate(vars_post): for updater in updaters: updater._namespace[var] = G_post._S[i] self.contained_objects += [G_pre, G_post]