problem.update_cell(candidate) currents_newdt = currents_given_v(v_newdt, t_newdt, problem.cell.soma, channel_list, ion_list, celsius) # convert units dvdt_sc, i_inj_sc, currents_sc, Cm, _ = convert_units(problem.cell.soma.L, problem.cell.soma.diam, problem.cell.soma.cm, dvdt_newdt, i_newdt, currents_newdt) # linear regression weights, residual, y, X = linear_regression(dvdt_sc, i_inj_sc, currents_sc, i_pas=0, Cm=Cm) # plots #plot_fit(y, X, weights, t_newdt, channel_list) # compute error error_traces[i, j] = rms(y, np.sum(np.array(currents), 0)) error_tmp = [rms(weights_model[k], weights[k]) for k in range(len(weights_model))] error_weights[i, j] = np.mean(error_tmp) # compute mean error of all models print for j, dt in enumerate(dts): print 'Mean error in the weights with dt = '+str(dt)+' ms: ' \ + str(np.mean(error_weights[:, j])) print for j, dt in enumerate(dts): print 'Mean error in the fit with dt = '+str(dt)+' ms: ' \ + str(np.mean(error_traces[:, j]))
def get_mean_rms_candidate_variables(self, candidate, optimal_candidate): return np.mean(np.array([rms(candidate[k], optimal_candidate[k]) for k in range(len(optimal_candidate))]))