def main(): ## options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to option YAML file.') args = parser.parse_args() if args.opt is not None: opt = parse(args.opt) else: opt = parse('./options/train_ESRGAN.yml') # Instantiate the generator model = make_generator(opt, print_summary=True) # Load the weights from a .h5 file model.load_weights('./experiments/backup/full/RRDB_GAN.h5') # Add a dummy Input layer that allows for inputs of arbitrary size (needed for SavedModel format) input = tf.keras.layers.Input(shape=(None,None,1)) # Create a new model with the input layer out = model(input) newModel = tf.keras.models.Model(input,out) # Save the model with the SavedModel format newModel.save('./experiments/pretrained_models/RRDB_GAN', save_format='tf')
def main(): #### setup options of three networks parser = argparse.ArgumentParser() parser.add_argument('-opt_P', type=str, help='Path to option YMAL file of Predictor.') parser.add_argument('-opt_C', type=str, help='Path to option YMAL file of Corrector.') parser.add_argument('-opt_F', type=str, help='Path to option YMAL file of SFTMD_Net.') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() opt_P = option.parse(args.opt_P, is_train=True) opt_C = option.parse(args.opt_C, is_train=True) opt_F = option.parse(args.opt_F, is_train=True) # convert to NoneDict, which returns None for missing keys opt_P = option.dict_to_nonedict(opt_P) opt_C = option.dict_to_nonedict(opt_C) opt_F = option.dict_to_nonedict(opt_F) # choose small opt for SFTMD test opt_F = opt_F['sftmd'] #### random seed seed = opt_P['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) util.set_random_seed(seed) # create PCA matrix of enough kernel batch_ker = util.random_batch_kernel(batch=30000, l=opt_P['kernel_size'], sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=3, tensor=False) print('batch kernel shape: {}'.format(batch_ker.shape)) b = np.size(batch_ker, 0) batch_ker = batch_ker.reshape((b, -1)) pca_matrix = util.PCA(batch_ker, k=opt_P['code_length']).float() print('PCA matrix shape: {}'.format(pca_matrix.shape)) #### distributed training settings if args.launcher == 'none': # disabled distributed training opt_P['dist'] = False opt_F['dist'] = False opt_C['dist'] = False rank = -1 print('Disabled distributed training.') else: opt_P['dist'] = True opt_F['dist'] = True opt_C['dist'] = True init_dist() world_size = torch.distributed.get_world_size() #Returns the number of processes in the current process group rank = torch.distributed.get_rank() #Returns the rank of current process group torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True ###### SFTMD train ###### SFTMD_train(opt_F, rank, world_size, pca_matrix) ###### Predictor&Corrector train ###### IKC_train(opt_P, opt_C, opt_F, rank, world_size, pca_matrix)
def main(): ## options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to option YAML file.') args = parser.parse_args() if args.opt is not None: opt = parse(args.opt) else: opt = parse('./options/train_ESRGAN.yml') train(opt)
def main(): #### options parser = argparse.ArgumentParser() parser.add_argument('--opt', type=str, help='Path to option YAML file.') args = parser.parse_args() opt = option.parse(args.opt, is_train=True) # convert to NoneDict, which returns None for missing keys opt = option.dict_to_nonedict(opt) #### random seed seed = opt['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) print('Random seed: {}'.format(seed)) util.set_random_seed(seed) torch.backends.cudnn.benchmark = False # torch.backends.cudnn.deterministic = True #### create model model = create_model(opt) #### op counting print('Start counting') var_L = torch.zeros(1, 3, 320, 180).cuda() # var_ref=torch.zeros(1280,720).cuda() # var_H=torch.zeros(1280,720).cuda() print('netG') macs, params = profile(model.netG, inputs=(var_L, )) macs, params = clever_format([macs, params], "%.5f") print('macs:{},params:{}'.format(macs, params))
def main(): ## options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to option YAML file.') args = parser.parse_args() if args.opt is not None: opt = parse(args.opt) else: opt = parse('./options/train_ESRGAN.yml') if not os.path.exists(opt['path']['pretrained_model_G']): print("Pretrain checkpoint not found, starting pretraining...") pretrain(opt) else: print("Pretrained model already found: " + opt['path']['pretrained_model_G'] + ", aborting")
def downloadModel(): # json parse parser = argparse.ArgumentParser( description='Test Super Resolution Models') parser.add_argument('-opt', type=str, required=True, help='Path to options JSON file.') opt = option.parse(parser.parse_args().opt) opt = option.dict_to_nonedict(opt) # json parse된것 초기화 scale = opt['scale'] degrad = opt['degradation'] network_opt = opt['networks'] model_name = network_opt['which_model'].upper() if opt['self_ensemble']: model_name += 'plus' #json파일로 model로드 solver = create_solver(opt) #testset SR한번 후 본격 SR 진행 shutil.copy('./results/LR/Test/!.png', './results/LR/MyImage/!.png') shutil.copy('./results/LR/Test/!.png', './results/LR/MyImage/!!.png') SR(solver, opt, model_name) os.remove('./results/LR/MyImage/!!.png') return solver, opt, model_name
class SISR(): def __init__(): return parser = argparse.ArgumentParser(description='Test Super Resolution Models') parser.add_argument('-opt', type=str, required=True, help='Path to options JSON file.') opt = option.parse(parser.parse_args().opt) opt = option.dict_to_nonedict(opt) #initial configure scale = opt['scale'] degrad = opt['degradation'] network_opt = opt['networks'] model_name = network_opt['which_model'].upper() if opt['self_ensemble']: model_name += 'plus' for _, dataset_opt in sorted(opt['datasets'].items()): test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt) test_loaders.append(test_loader) print('===> Test Dataset: [%s] Number of images: [%d]' % (test_set.name(), len(test_set))) bm_names.append(test_set.name()) # create solver (and load model) solver = create_solver(opt) # create test dataloader bm_names =[] test_loaders = [] print("==================================================") print("Method: %s || Scale: %d || Degradation: %s"%(model_name, scale, degrad))
def main(): # options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, required=True, help='Path to options JSON file.') opt = option.parse(parser.parse_args().opt, is_train=False) #util.mkdirs((path for key, path in opt['path'].items() if not key == 'pretrain_model_G')) opt = option.dict_to_nonedict(opt) #util.setup_logger(None, opt['path']['log'], 'test.log', level=logging.INFO, screen=True) #logger = logging.getLogger('base') #logger.info(option.dict2str(opt)) # Create test dataset and dataloader test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt) #logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set))) test_loaders.append(test_loader) # Create model model = create_model(opt) modelKey = 'SR' if opt['model'] == 'ppon': modelKey = 'img_p' print('Model is recognized as PPON model') for test_loader in test_loaders: test_set_name = test_loader.dataset.opt['name'] print('\nTesting [{:s}]...'.format(test_set_name)) #logger.info('\nTesting [{:s}]...'.format(test_set_name)) test_start_time = time.time() #dataset_dir = os.path.join(opt['path']['results_root'], test_set_name) dataset_dir = test_loader.dataset.opt['dataroot_HR'] #util.mkdir(dataset_dir) idx = 0 for data in test_loader: idx += 1 need_HR = False #if test_loader.dataset.opt['dataroot_HR'] is None else True model.feed_data(data, need_HR=need_HR) img_path = data['LR_path'][0] img_name = os.path.splitext(os.path.basename(img_path))[0] model.test() # test visuals = model.get_current_visuals(need_HR=need_HR) if opt['model'] == 'ppon': sr_img_c = util.tensor2img(visuals['img_c']) sr_img_s = util.tensor2img(visuals['img_s']) sr_img = util.tensor2img(visuals[modelKey]) # save images baseinput = os.path.splitext(os.path.basename(img_path))[0][:-8] model_path = opt['path']['pretrain_model_G'] modelname = os.path.splitext(os.path.basename(model_path))[0] save_img_path = os.path.join(dataset_dir, img_name + '.png') if opt['model'] == 'ppon':
def load_model(conf_path): opt = option.parse(conf_path, is_train=False) opt['gpu_ids'] = None opt = option.dict_to_nonedict(opt) model = create_model(opt) model_path = opt_get(opt, ['model_path'], None) model.load_network(load_path=model_path, network=model.netG) return model, opt
def load_model(self): opt_path = './options/test/test_EDVR_M_AI4KHDR.yml' opt = option.parse(opt_path, is_train=False) opt['dist'] = False rank = -1 opt = option.dict_to_nonedict(opt) torch.backends.cudnn.benchmark = True #### create model model = create_model(opt) return model
def main(): assert torch.cuda.is_available() parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, required=True, help='Path to option JSON file.') opt = option.parse(parser.parse_args().opt, is_train=True) opt = option.dict_to_nonedict( opt) # Convert to NoneDict, which return None for missing key.
def setup(opts): global opt model_scale = opts["scale"] model = model_scale + "/" + "model.pth" config = model_scale + "/" + "config.json" opt = option.parse(config) opt = option.dict_to_nonedict(opt) solver = create_solver(opt, model) return solver
def get_options(json_path): """options""" # parser = argparse.ArgumentParser() # parser.add_argument( # '-opt', type=str, required=True, help='Path to options JSON file.') # opt = option.parse(parser.parse_args().opt, is_train=False) is_train = False opt = option.parse(json_path, is_train) util.mkdirs((path for key, path in opt['path'].items() if not key == 'pretrain_model_G')) opt = option.dict_to_nonedict(opt) util.setup_logger(None, opt['path']['log'], 'test', level=logging.INFO, screen=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) return opt, logger
def run(pretrained_path, output_path, model_name='SRFBN', scale=4, degrad='BI', opt='options/test/test_SRFBN_example.json'): opt = option.parse(opt) opt = option.dict_to_nonedict(opt) # model = create_model(opt) model = define_net({ "scale": scale, "which_model": "SRFBN", "num_features": 64, "in_channels": 3, "out_channels": 3, "num_steps": 4, "num_groups": 6 }) img = common.read_img('./results/LR/MyImage/chip.png', 'img') np_transpose = np.ascontiguousarray(img.transpose((2, 0, 1))) tensor = torch.from_numpy(np_transpose).float() lr_tensor = torch.unsqueeze(tensor, 0) checkpoint = torch.load(pretrained_path) if 'state_dict' in checkpoint.keys(): checkpoint = checkpoint['state_dict'] load_func = model.load_state_dict load_func(checkpoint) torch.save(model, './model.pt') with torch.no_grad(): SR = model(lr_tensor)[0] # visuals = np.transpose(SR.data[0].float().cpu().numpy(), (1, 2, 0)).astype(np.uint8) visuals = np.transpose(SR.data[0].float().cpu().numpy(), (1, 2, 0)).astype(np.uint8) imageio.imwrite(output_path, visuals)
def main(): # options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, required=True, help='Path to option JSON file.') opt = option.parse(parser.parse_args().opt, is_train=True) util.mkdir_and_rename( opt['path']['experiments_root']) # rename old experiments if exists util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root' and \ not key == 'pretrain_model_G' and not key == 'pretrain_model_D')) option.save(opt) opt = option.dict_to_nonedict( opt) # Convert to NoneDict, which return None for missing key. # print to file and std_out simultaneously sys.stdout = PrintLogger(opt['path']['log']) # random seed seed = opt['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) print("Random Seed: ", seed) random.seed(seed) torch.manual_seed(seed) # create train and val dataloader for phase, dataset_opt in opt['datasets'].items(): if phase == 'train': train_set = create_dataset(dataset_opt) train_size = int( math.ceil(len(train_set) / dataset_opt['batch_size'])) print('Number of train images: {:,d}, iters: {:,d}'.format( len(train_set), train_size)) total_iters = int(opt['train']['niter']) total_epoches = int(math.ceil(total_iters / train_size)) print('Total epoches needed: {:d} for iters {:,d}'.format( total_epoches, total_iters)) train_loader = create_dataloader(train_set, dataset_opt) elif phase == 'val': val_dataset_opt = dataset_opt val_set = create_dataset(dataset_opt) val_loader = create_dataloader(val_set, dataset_opt) print('Number of val images in [{:s}]: {:d}'.format( dataset_opt['name'], len(val_set))) else: raise NotImplementedError( 'Phase [{:s}] is not recognized.'.format(phase)) assert train_loader is not None # Create model model = create_model(opt) # create logger logger = Logger(opt) current_step = 0 start_time = time.time() print('---------- Start training -------------') for epoch in range(total_epoches): for i, train_data in enumerate(train_loader): current_step += 1 if current_step > total_iters: break # training model.feed_data(train_data) model.optimize_parameters(current_step) time_elapsed = time.time() - start_time start_time = time.time() # log if current_step % opt['logger']['print_freq'] == 0: logs = model.get_current_log() print_rlt = OrderedDict() print_rlt['model'] = opt['model'] print_rlt['epoch'] = epoch print_rlt['iters'] = current_step print_rlt['time'] = time_elapsed for k, v in logs.items(): print_rlt[k] = v print_rlt['lr'] = model.get_current_learning_rate() logger.print_format_results('train', print_rlt) # save models if current_step % opt['logger']['save_checkpoint_freq'] == 0: print('Saving the model at the end of iter {:d}.'.format( current_step)) model.save(current_step) # validation if current_step % opt['train']['val_freq'] == 0: print('---------- validation -------------') start_time = time.time() avg_psnr = 0.0 idx = 0 for val_data in val_loader: idx += 1 img_name = os.path.splitext( os.path.basename(val_data['LR_path'][0]))[0] img_dir = os.path.join(opt['path']['val_images'], img_name) util.mkdir(img_dir) model.feed_data(val_data) model.test() visuals = model.get_current_visuals() sr_img = util.tensor2img(visuals['SR']) # uint8 gt_img = util.tensor2img(visuals['HR']) # uint8 # Save SR images for reference save_img_path = os.path.join(img_dir, '{:s}_{:d}.png'.format(\ img_name, current_step)) util.save_img(sr_img, save_img_path) # calculate PSNR if opt['crop_scale'] is not None: crop_size = opt['crop_scale'] else: crop_size = opt['scale'] if crop_size <= 0: cropped_sr_img = sr_img.copy() cropped_gt_img = gt_img.copy() else: if len(gt_img.shape) < 3: cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size] cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size] else: cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size, :] cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size, :] #avg_psnr += util.psnr(cropped_sr_img, cropped_gt_img) cropped_sr_img_y = bgr2ycbcr(cropped_sr_img, only_y=True) cropped_gt_img_y = bgr2ycbcr(cropped_gt_img, only_y=True) avg_psnr += util.psnr( cropped_sr_img_y, cropped_gt_img_y) ##########only y channel avg_psnr = avg_psnr / idx time_elapsed = time.time() - start_time # Save to log print_rlt = OrderedDict() print_rlt['model'] = opt['model'] print_rlt['epoch'] = epoch print_rlt['iters'] = current_step print_rlt['time'] = time_elapsed print_rlt['psnr'] = avg_psnr logger.print_format_results('val', print_rlt) print('-----------------------------------') # update learning rate model.update_learning_rate() print('Saving the final model.') model.save('latest') print('End of training.')
def main(): # options parser = argparse.ArgumentParser() parser.add_argument("-opt", type=str, help="Path to option YAML file.") parser.add_argument("--launcher", choices=["none", "pytorch"], default="none", help="job launcher") parser.add_argument("--local_rank", type=int, default=0) args = parser.parse_args() opt = option.parse(args.opt, is_train=True) # distributed training settings if args.launcher == "none": # disabled distributed training opt["dist"] = False rank = -1 print("Disabled distributed training.") else: opt["dist"] = True init_dist() world_size = torch.distributed.get_world_size() rank = torch.distributed.get_rank() # loading resume state if exists if opt["path"].get("resume_state", None): # distributed resuming: all load into default GPU device_id = torch.cuda.current_device() resume_state = torch.load( opt["path"]["resume_state"], map_location=lambda storage, loc: storage.cuda(device_id)) option.check_resume(opt, resume_state["iter"]) # check resume options else: resume_state = None # mkdir and loggers if rank <= 0: # normal training (rank -1) OR distributed training (rank 0) if resume_state is None: util.mkdir_and_rename( opt["path"] ["experiments_root"]) # rename experiment folder if exists util.mkdirs( (path for key, path in opt["path"].items() if not key == "experiments_root" and "pretrain_model" not in key and "resume" not in key)) # config loggers. Before it, the log will not work util.setup_logger("base", opt["path"]["log"], "train_" + opt["name"], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger("base") logger.info(option.dict2str(opt)) # tensorboard logger if opt["use_tb_logger"] and "debug" not in opt["name"]: version = float(torch.__version__[0:3]) if version >= 1.1: # PyTorch 1.1 from torch.utils.tensorboard import SummaryWriter else: logger.info("You are using PyTorch {}. \ Tensorboard will use [tensorboardX]".format( version)) from tensorboardX import SummaryWriter tb_logger = SummaryWriter(log_dir="../tb_logger/" + opt["name"]) else: util.setup_logger("base", opt["path"]["log"], "train", level=logging.INFO, screen=True) logger = logging.getLogger("base") # convert to NoneDict, which returns None for missing keys opt = option.dict_to_nonedict(opt) # random seed seed = opt["train"]["manual_seed"] if seed is None: seed = random.randint(1, 10000) if rank <= 0: logger.info("Random seed: {}".format(seed)) util.set_random_seed(seed) torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True # create train and val dataloader dataset_ratio = 200 # enlarge the size of each epoch for phase, dataset_opt in opt["datasets"].items(): if phase == "train": train_set = create_dataset(dataset_opt) train_size = int( math.ceil(len(train_set) / dataset_opt["batch_size"])) total_iters = int(opt["train"]["niter"]) total_epochs = int(math.ceil(total_iters / train_size)) if opt["dist"]: train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio) total_epochs = int( math.ceil(total_iters / (train_size * dataset_ratio))) else: train_sampler = None train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler) if rank <= 0: logger.info( "Number of train images: {:,d}, iters: {:,d}".format( len(train_set), train_size)) logger.info("Total epochs needed: {:d} for iters {:,d}".format( total_epochs, total_iters)) elif phase == "val": val_set = create_dataset(dataset_opt) val_loader = create_dataloader(val_set, dataset_opt, opt, None) if rank <= 0: logger.info("Number of val images in [{:s}]: {:d}".format( dataset_opt["name"], len(val_set))) else: raise NotImplementedError( "Phase [{:s}] is not recognized.".format(phase)) assert train_loader is not None # create model model = create_model(opt) print("Model created!") # resume training if resume_state: logger.info("Resuming training from epoch: {}, iter: {}.".format( resume_state["epoch"], resume_state["iter"])) start_epoch = resume_state["epoch"] current_step = resume_state["iter"] model.resume_training(resume_state) # handle optimizers and schedulers else: current_step = 0 start_epoch = 0 # training logger.info("Start training from epoch: {:d}, iter: {:d}".format( start_epoch, current_step)) for epoch in range(start_epoch, total_epochs + 1): if opt["dist"]: train_sampler.set_epoch(epoch) for _, train_data in enumerate(train_loader): current_step += 1 if current_step > total_iters: break # update learning rate model.update_learning_rate(current_step, warmup_iter=opt["train"]["warmup_iter"]) # training model.feed_data(train_data) model.optimize_parameters(current_step) # log if current_step % opt["logger"]["print_freq"] == 0: logs = model.get_current_log() message = "[epoch:{:3d}, iter:{:8,d}, lr:(".format( epoch, current_step) for v in model.get_current_learning_rate(): message += "{:.3e},".format(v) message += ")] " for k, v in logs.items(): message += "{:s}: {:.4e} ".format(k, v) # tensorboard logger if opt["use_tb_logger"] and "debug" not in opt["name"]: if rank <= 0: tb_logger.add_scalar(k, v, current_step) if rank <= 0: logger.info(message) # validation if opt["datasets"].get( "val", None) and current_step % opt["train"]["val_freq"] == 0: # image restoration validation if opt["model"] in ["sr", "srgan"] and rank <= 0: # does not support multi-GPU validation pbar = util.ProgressBar(len(val_loader)) avg_psnr = 0.0 idx = 0 for val_data in val_loader: idx += 1 img_name = os.path.splitext( os.path.basename(val_data["LQ_path"][0]))[0] img_dir = os.path.join(opt["path"]["val_images"], img_name) util.mkdir(img_dir) model.feed_data(val_data) model.test() visuals = model.get_current_visuals() sr_img = util.tensor2img(visuals["rlt"]) # uint8 gt_img = util.tensor2img(visuals["GT"]) # uint8 # Save SR images for reference save_img_path = os.path.join( img_dir, "{:s}_{:d}.png".format(img_name, current_step)) util.save_img(sr_img, save_img_path) # calculate PSNR sr_img, gt_img = util.crop_border([sr_img, gt_img], opt["scale"]) avg_psnr += util.calculate_psnr(sr_img, gt_img) pbar.update("Test {}".format(img_name)) avg_psnr = avg_psnr / idx # log logger.info("# Validation # PSNR: {:.4e}".format(avg_psnr)) # tensorboard logger if opt["use_tb_logger"] and "debug" not in opt["name"]: tb_logger.add_scalar("psnr", avg_psnr, current_step) else: # video restoration validation if opt["dist"]: # multi-GPU testing psnr_rlt = {} # with border and center frames if rank == 0: pbar = util.ProgressBar(len(val_set)) for idx in range(rank, len(val_set), world_size): val_data = val_set[idx] val_data["LQs"].unsqueeze_(0) val_data["GT"].unsqueeze_(0) folder = val_data["folder"] idx_d, max_idx = val_data["idx"].split("/") idx_d, max_idx = int(idx_d), int(max_idx) if psnr_rlt.get(folder, None) is None: psnr_rlt[folder] = torch.zeros( max_idx, dtype=torch.float32, device="cuda") model.feed_data(val_data) model.test() visuals = model.get_current_visuals() rlt_img = util.tensor2img(visuals["rlt"]) # uint8 gt_img = util.tensor2img(visuals["GT"]) # uint8 # calculate PSNR psnr_rlt[folder][idx_d] = util.calculate_psnr( rlt_img, gt_img) if rank == 0: for _ in range(world_size): pbar.update("Test {} - {}/{}".format( folder, idx_d, max_idx)) # collect data for _, v in psnr_rlt.items(): dist.reduce(v, 0) dist.barrier() if rank == 0: psnr_rlt_avg = {} psnr_total_avg = 0.0 for k, v in psnr_rlt.items(): psnr_rlt_avg[k] = torch.mean(v).cpu().item() psnr_total_avg += psnr_rlt_avg[k] psnr_total_avg /= len(psnr_rlt) log_s = "# Validation # PSNR: {:.4e}:".format( psnr_total_avg) for k, v in psnr_rlt_avg.items(): log_s += " {}: {:.4e}".format(k, v) logger.info(log_s) if opt["use_tb_logger"] and "debug" not in opt[ "name"]: tb_logger.add_scalar("psnr_avg", psnr_total_avg, current_step) for k, v in psnr_rlt_avg.items(): tb_logger.add_scalar(k, v, current_step) else: pbar = util.ProgressBar(len(val_loader)) psnr_rlt = {} # with border and center frames psnr_rlt_avg = {} psnr_total_avg = 0.0 for val_data in val_loader: folder = val_data["folder"][0] idx_d, max_id = val_data["idx"][0].split("/") # border = val_data['border'].item() if psnr_rlt.get(folder, None) is None: psnr_rlt[folder] = [] model.feed_data(val_data) model.test() visuals = model.get_current_visuals() rlt_img = util.tensor2img(visuals["rlt"]) # uint8 gt_img = util.tensor2img(visuals["GT"]) # uint8 lq_img = util.tensor2img(visuals["LQ"][2]) # uint8 img_dir = opt["path"]["val_images"] util.mkdir(img_dir) save_img_path = os.path.join( img_dir, "{}.png".format(idx_d)) util.save_img(np.hstack((lq_img, rlt_img, gt_img)), save_img_path) # calculate PSNR psnr = util.calculate_psnr(rlt_img, gt_img) psnr_rlt[folder].append(psnr) pbar.update("Test {} - {}".format(folder, idx_d)) for k, v in psnr_rlt.items(): psnr_rlt_avg[k] = sum(v) / len(v) psnr_total_avg += psnr_rlt_avg[k] psnr_total_avg /= len(psnr_rlt) log_s = "# Validation # PSNR: {:.4e}:".format( psnr_total_avg) for k, v in psnr_rlt_avg.items(): log_s += " {}: {:.4e}".format(k, v) logger.info(log_s) if opt["use_tb_logger"] and "debug" not in opt["name"]: tb_logger.add_scalar("psnr_avg", psnr_total_avg, current_step) for k, v in psnr_rlt_avg.items(): tb_logger.add_scalar(k, v, current_step) # save models and training states if current_step % opt["logger"]["save_checkpoint_freq"] == 0: if rank <= 0: logger.info("Saving models and training states.") model.save(current_step) model.save_training_state(epoch, current_step) if rank <= 0: logger.info("Saving the final model.") model.save("latest") logger.info("End of training.") tb_logger.close()
def main(): # options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, required=True, help='Path to options file.') opt = option.parse(parser.parse_args().opt, is_train=False) util.mkdirs((path for key, path in opt['path'].items() if not key == 'pretrain_model_G')) opt = option.dict_to_nonedict(opt) util.setup_logger(None, opt['path']['log'], 'test.log', level=logging.INFO, screen=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) # Create test dataset and dataloader test_loaders = [] znorm = False for phase, dataset_opt in sorted(opt['datasets'].items()): test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt) logger.info('Number of test images in [{:s}]: {:d}'.format( dataset_opt['name'], len(test_set))) test_loaders.append(test_loader) # Temporary, will turn znorm on for all the datasets. Will need to introduce a variable for each dataset and differentiate each one later in the loop. if dataset_opt['znorm'] and znorm == False: znorm = True # Create model model = create_model(opt) for test_loader in test_loaders: test_set_name = test_loader.dataset.opt['name'] logger.info('\nTesting [{:s}]...'.format(test_set_name)) test_start_time = time.time() dataset_dir = os.path.join(opt['path']['results_root'], test_set_name) util.mkdir(dataset_dir) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] test_results['psnr_y'] = [] test_results['ssim_y'] = [] for data in test_loader: need_HR = False if test_loader.dataset.opt[ 'dataroot_HR'] is None else True model.feed_data(data, need_HR=need_HR) img_path = data['LR_path'][0] img_name = os.path.splitext(os.path.basename(img_path))[0] model.test() # test visuals = model.get_current_visuals(need_HR=need_HR) if znorm: #opt['datasets']['train']['znorm']: # If the image range is [-1,1] # In testing, each "dataset" can have a different name (not train, val or other) sr_img = util.tensor2img(visuals['SR'], min_max=(-1, 1)) # uint8 else: # Default: Image range is [0,1] sr_img = util.tensor2img(visuals['SR']) # uint8 # save images suffix = opt['suffix'] if suffix: save_img_path = os.path.join(dataset_dir, img_name + suffix + '.png') else: save_img_path = os.path.join(dataset_dir, img_name + '.png') util.save_img(sr_img, save_img_path) # calculate PSNR and SSIM if need_HR: if znorm: #opt['datasets']['train']['znorm']: # If the image range is [-1,1] # In testing, each "dataset" can have a different name (not train, val or other) gt_img = util.tensor2img(visuals['HR'], min_max=(-1, 1)) # uint8 else: # Default: Image range is [0,1] gt_img = util.tensor2img(visuals['HR']) # uint8 gt_img = gt_img / 255. sr_img = sr_img / 255. crop_border = test_loader.dataset.opt['scale'] cropped_sr_img = sr_img[crop_border:-crop_border, crop_border:-crop_border, :] cropped_gt_img = gt_img[crop_border:-crop_border, crop_border:-crop_border, :] psnr = util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255) ssim = util.calculate_ssim(cropped_sr_img * 255, cropped_gt_img * 255) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) if gt_img.shape[2] == 3: # RGB image sr_img_y = bgr2ycbcr(sr_img, only_y=True) gt_img_y = bgr2ycbcr(gt_img, only_y=True) cropped_sr_img_y = sr_img_y[crop_border:-crop_border, crop_border:-crop_border] cropped_gt_img_y = gt_img_y[crop_border:-crop_border, crop_border:-crop_border] psnr_y = util.calculate_psnr(cropped_sr_img_y * 255, cropped_gt_img_y * 255) ssim_y = util.calculate_ssim(cropped_sr_img_y * 255, cropped_gt_img_y * 255) test_results['psnr_y'].append(psnr_y) test_results['ssim_y'].append(ssim_y) logger.info('{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}.'\ .format(img_name, psnr, ssim, psnr_y, ssim_y)) else: logger.info( '{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}.'.format( img_name, psnr, ssim)) else: logger.info(img_name) if need_HR: # metrics # Average PSNR/SSIM results ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) logger.info('----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n'\ .format(test_set_name, ave_psnr, ave_ssim)) if test_results['psnr_y'] and test_results['ssim_y']: ave_psnr_y = sum(test_results['psnr_y']) / len( test_results['psnr_y']) ave_ssim_y = sum(test_results['ssim_y']) / len( test_results['ssim_y']) logger.info('----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}\n'\ .format(ave_psnr_y, ave_ssim_y))
import torch import numpy as np import pandas as pd from tqdm import tqdm import options.options as option from torch import utils as vutils from data import create_dataset, create_dataloader from solvers import create_solver from utils import util torch.backends.cudnn.determinstic = True parser = argparse.ArgumentParser(description='Train Super Resolution Models in FedProx') parser.add_argument('-opt', type=str, required=True, help='Path to options JSON file.') opt = option.parse(parser.parse_args().opt) ##### Random seed ##### seed = opt['solver']['manual_seed'] if seed is None: seed = random.randint(1, 10000) print("=====> Random Seed: %d" %seed) torch.manual_seed(seed) ##### Hyperparameters for federated learning ##### num_clients = opt['fed']['num_clients'] num_selected = int(num_clients * opt['fed']['sample_fraction']) num_rounds = opt['fed']['num_rounds'] client_epochs = opt['fed']['epochs']
def main(): parser = argparse.ArgumentParser( description='Test Super Resolution Models') parser.add_argument('-opt', type=str, required=True, help='Path to options JSON file.') opt = option.parse(parser.parse_args().opt) opt = option.dict_to_nonedict(opt) # initial configure scale = opt['scale'] degrad = opt['degradation'] network_opt = opt['networks'] model_name = network_opt['which_model'].upper() if opt['self_ensemble']: model_name += 'plus' # create test dataloader bm_names = [] test_loaders = [] for _, dataset_opt in sorted(opt['datasets'].items()): test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt) test_loaders.append(test_loader) print('===> Test Dataset: [%s] Number of images: [%d]' % (test_set.name(), len(test_set))) bm_names.append(test_set.name()) # create solver (and load model) solver = create_solver(opt) # Test phase print('===> Start Test') print("==================================================") print("Method: %s || Scale: %d || Degradation: %s" % (model_name, scale, degrad)) for bm, test_loader in zip(bm_names, test_loaders): print("Test set : [%s]" % bm) sr_list = [] path_list = [] total_psnr = [] total_ssim = [] total_time = [] need_HR = False if test_loader.dataset.__class__.__name__.find( 'LRHR') < 0 else True for iter, batch in enumerate(test_loader): solver.feed_data(batch, need_HR=need_HR) # calculate forward time t0 = time.time() solver.test() t1 = time.time() total_time.append((t1 - t0)) visuals = solver.get_current_visual(need_HR=need_HR) sr_list.append(visuals['SR']) # calculate PSNR/SSIM metrics on Python if need_HR: psnr, ssim = util.calc_metrics(visuals['SR'], visuals['HR'], crop_border=scale) total_psnr.append(psnr) total_ssim.append(ssim) path_list.append( os.path.basename(batch['HR_path'][0]).replace( 'HR', model_name)) print( "[%d/%d] %s || PSNR(dB)/SSIM: %.2f/%.4f || Timer: %.4f sec ." % (iter + 1, len(test_loader), os.path.basename(batch['LR_path'][0]), psnr, ssim, (t1 - t0))) else: path_list.append(os.path.basename(batch['LR_path'][0])) print("[%d/%d] %s || Timer: %.4f sec ." % (iter + 1, len(test_loader), os.path.basename(batch['LR_path'][0]), (t1 - t0))) if need_HR: print("---- Average PSNR(dB) /SSIM /Speed(s) for [%s] ----" % bm) print("PSNR: %.2f SSIM: %.4f Speed: %.4f" % (sum(total_psnr) / len(total_psnr), sum(total_ssim) / len(total_ssim), sum(total_time) / len(total_time))) else: print("---- Average Speed(s) for [%s] is %.4f sec ----" % (bm, sum(total_time) / len(total_time))) # save SR results for further evaluation on MATLAB if need_HR: save_img_path = os.path.join('./results/SR/' + degrad, model_name, bm, "x%d" % scale) else: save_img_path = os.path.join('./results/SR/' + bm, model_name, "x%d" % scale) print("===> Saving SR images of [%s]... Save Path: [%s]\n" % (bm, save_img_path)) if not os.path.exists(save_img_path): os.makedirs(save_img_path) for img, name in zip(sr_list, path_list): imageio.imwrite(os.path.join(save_img_path, name), img) print("==================================================") print("===> Finished !")
def main(): # options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, required=True, help='Path to option JSON file.') opt = option.parse(parser.parse_args().opt, is_train=True) opt = option.dict_to_nonedict( opt) # Convert to NoneDict, which return None for missing key. # train from scratch OR resume training if opt['path']['resume_state']: # resuming training resume_state = torch.load(opt['path']['resume_state']) else: # training from scratch resume_state = None util.mkdir_and_rename( opt['path']['experiments_root']) # rename old folder if exists util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) # config loggers. Before it, the log will not work util.setup_logger(None, opt['path']['log'], 'train', level=logging.INFO, screen=True) util.setup_logger('val', opt['path']['log'], 'val', level=logging.INFO) logger = logging.getLogger('base') if resume_state: logger.info('Resuming training from epoch: {}, iter: {}.'.format( resume_state['epoch'], resume_state['iter'])) option.check_resume(opt) # check resume options logger.info(option.dict2str(opt)) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: from tensorboardX import SummaryWriter tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt['name']) # random seed seed = opt['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) logger.info('Random seed: {}'.format(seed)) util.set_random_seed(seed) torch.backends.cudnn.benckmark = True # torch.backends.cudnn.deterministic = True # create train and val dataloader for phase, dataset_opt in opt['datasets'].items(): if phase == 'train': train_set = create_dataset(dataset_opt) train_size = int( math.ceil(len(train_set) / dataset_opt['batch_size'])) logger.info('Number of train images: {:,d}, iters: {:,d}'.format( len(train_set), train_size)) total_iters = int(opt['train']['niter']) total_epochs = int(math.ceil(total_iters / train_size)) logger.info('Total epochs needed: {:d} for iters {:,d}'.format( total_epochs, total_iters)) train_loader = create_dataloader(train_set, dataset_opt) elif phase == 'val': val_set = create_dataset(dataset_opt) val_loader = create_dataloader(val_set, dataset_opt) logger.info('Number of val images in [{:s}]: {:d}'.format( dataset_opt['name'], len(val_set))) else: raise NotImplementedError( 'Phase [{:s}] is not recognized.'.format(phase)) assert train_loader is not None # create model model = create_model(opt) # resume training if resume_state: start_epoch = resume_state['epoch'] current_step = resume_state['iter'] model.resume_training(resume_state) # handle optimizers and schedulers else: current_step = 0 start_epoch = 0 # training logger.info('Start training from epoch: {:d}, iter: {:d}'.format( start_epoch, current_step)) for epoch in range(start_epoch, total_epochs): for _, train_data in enumerate(train_loader): current_step += 1 if current_step > total_iters: break # update learning rate model.update_learning_rate() # training model.feed_data(train_data) model.optimize_parameters(current_step) # log if current_step % opt['logger']['print_freq'] == 0: logs = model.get_current_log() message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format( epoch, current_step, model.get_current_learning_rate()) for k, v in logs.items(): message += '{:s}: {:.4e} '.format(k, v) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: tb_logger.add_scalar(k, v, current_step) logger.info(message) # validation if current_step % opt['train']['val_freq'] == 0: avg_psnr = 0.0 avg_IS = 0.0 idx = 0 for val_data in val_loader: idx += 1 img_name = os.path.splitext( os.path.basename(val_data['LR_path'][0]))[0] img_dir = os.path.join(opt['path']['val_images'], img_name) util.mkdir(img_dir) model.feed_data(val_data) model.test() visuals = model.get_current_visuals() sr_img = util.tensor2img(visuals['SR']) # uint8 gt_img = util.tensor2img(visuals['HR']) # uint8 # Save SR images for reference save_img_path = os.path.join(img_dir, '{:s}_{:d}.png'.format(\ img_name, current_step)) util.save_img(sr_img, save_img_path) #calculate IS IS = model.get_IS() avg_IS += IS # calculate PSNR crop_size = opt['scale'] gt_img = gt_img / 255. sr_img = sr_img / 255. cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size, :] cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size, :] avg_psnr += util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255) avg_psnr = avg_psnr / idx avg_IS = avg_IS / idx # log logger.info('# Validation # PSNR: {:.4e} IS : {:.4e}'.format( avg_psnr, avg_IS)) logger_val = logging.getLogger('val') # validation logger logger_val.info( '<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e} is: {:.4e} '. format(epoch, current_step, avg_psnr, avg_IS)) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: tb_logger.add_scalar('psnr', avg_psnr, current_step) tb_logger.add_scalar('IS', avg_IS, current_step) # save models and training states if current_step % opt['logger']['save_checkpoint_freq'] == 0: logger.info('Saving models and training states.') model.save(current_step) model.save_training_state(epoch, current_step) logger.info('Saving the final model.') model.save('latest') logger.info('End of training.')
import utils.util as util from options import options import os from CIFARTrainer import Trainer if __name__ == '__main__': opt = options.parse() util.mkdirs(os.path.join(opt.checkpoints_dir, opt.name)) logger = util.get_logger( os.path.join(opt.checkpoints_dir, opt.name, 'logger.log')) Trainer(opt, logger).train()
def main(): global opt, model_G, model_D, netContent, writer, STEPS opt = parser.parse_args() options = option.parse(opt.options) print(opt) out_folder = "steps({})_lrIN({})_lrOUT({})_lambda(mseIN={},mseOUT={},vgg={},adv={},preserve={})".format( opt.inner_loop_steps, opt.lr_inner, opt.lr_outer, opt.mse_loss_coefficient_inner, opt.mse_loss_coefficient_outer, opt.vgg_loss_coefficient, opt.adversarial_loss_coefficient, opt.preservation_loss_coefficient) writer = SummaryWriter(logdir=os.path.join(opt.logs_dir, out_folder), comment="-srgan-") opt.sample_dir = os.path.join(opt.sample_dir, out_folder) opt.fine_sample_dir = os.path.join(opt.fine_sample_dir, out_folder) opt.checkpoint_file_init = os.path.join(opt.checkpoint_dir, "init/" + out_folder) opt.checkpoint_file_final = os.path.join(opt.checkpoint_dir, "final/" + out_folder) opt.checkpoint_file_fine = os.path.join(opt.fine_checkpoint_dir, out_folder) os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus if not torch.cuda.is_available(): raise Exception( "No GPU found or Wrong gpu id, please run without --cuda") opt.seed = random.randint(1, 10000) print("Random Seed: ", opt.seed) torch.manual_seed(opt.seed) torch.cuda.manual_seed(opt.seed) cudnn.benchmark = True print("===> Loading datasets") dataset_opt = options['datasets']['train'] dataset_opt['batch_size'] = opt.batchSize print(dataset_opt) train_set = create_dataset(dataset_opt) training_data_loader = create_dataloader(train_set, dataset_opt) print('===> Train Dataset: %s Number of images: [%d]' % (train_set.name(), len(train_set))) if training_data_loader is None: raise ValueError("[Error] The training data does not exist") print('===> Loading VGG model') netVGG = models.vgg19() if os.path.isfile('data/vgg19-dcbb9e9d.pth'): netVGG.load_state_dict(torch.load('data/vgg19-dcbb9e9d.pth')) else: netVGG.load_state_dict( model_zoo.load_url( 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth')) class _content_model(nn.Module): def __init__(self): super(_content_model, self).__init__() self.feature = nn.Sequential( *list(netVGG.features.children())[:-1]) def forward(self, x): out = self.feature(x) return out G_init = _NetG(opt).cuda() model_D = _NetD().cuda() netContent = _content_model().cuda() criterion_G = GeneratorLoss(netContent, writer, STEPS).cuda() criterion_D = nn.BCELoss().cuda() # optionally copy weights from a checkpoint if opt.pretrained: assert os.path.isfile(opt.pretrained) print("=> loading model '{}'".format(opt.pretrained)) weights = torch.load(opt.pretrained) # changed G_init.load_state_dict(weights['model'].state_dict()) print("===> Setting Optimizer") # changed optimizer_G_outer = optim.Adam(G_init.parameters(), lr=opt.lr_outer) optimizer_D = optim.Adam(model_D.parameters(), lr=opt.lr_disc) print("===> Pre-fetching validation data for monitoring training") test_dump_file = 'data/dump/Test5.pickle' if os.path.isfile(test_dump_file): with open(test_dump_file, 'rb') as p: images_test = pickle.load(p) images_hr = images_test['images_hr'] images_lr = images_test['images_lr'] print("===>Loading Checkpoint Test images") else: images_hr, images_lr = create_val_ims() print("===>Creating Checkpoint Test images") print("===> Training") epoch = opt.start_epoch try: while STEPS < (opt.inner_loop_steps + 1) * opt.max_updates: # changed last_model_G = train(training_data_loader, optimizer_G_outer, optimizer_D, G_init, model_D, criterion_G, criterion_D, epoch, STEPS, writer) assert last_model_G is not None save_checkpoint(images_hr, images_lr, G_init, last_model_G, epoch) epoch += 1 except KeyboardInterrupt: print("KeyboardInterrupt HANDLED! Running the final epoch on G_init") epoch += 1 if STEPS < 5e4: lr_finetune = opt.lr_inner elif STEPS < 1e5: lr_finetune = opt.lr_inner / 2 elif STEPS < 2e5: lr_finetune = opt.lr_inner / 4 elif STEPS < 4e5: lr_finetune = opt.lr_inner / 8 elif STEPS < 8e5: lr_finetune = opt.lr_inner / 16 else: lr_finetune = opt.lr_inner / 32 model_G = deepcopy(G_init) optimizer_G_inner = optim.Adam(model_G.parameters(), lr=lr_finetune) model_G.train() optimizer_G_inner.zero_grad() init_parameters = torch.cat( [p.view(-1) for k, p in G_init.named_parameters() if p.requires_grad]) opt.adversarial_loss = False opt.vgg_loss = True opt.mse_loss_coefficient = opt.mse_loss_coefficient_inner start_time = dt.datetime.now() total_num_examples = len(training_data_loader) for iteration, batch in enumerate(training_data_loader, 1): input, target = Variable(batch['LR']), Variable(batch['HR'], requires_grad=False) input = input.cuda() / 255 target = target.cuda() / 255 STEPS += 1 output = model_G(input) fake_out = None optimizer_G_inner.zero_grad() loss_g_inner = criterion_G(fake_out, output, target, opt) curr_parameters = torch.cat([ p.view(-1) for k, p in model_G.named_parameters() if p.requires_grad ]) preservation_loss = ((Variable(init_parameters).detach() - curr_parameters)**2).sum() loss_g_inner += preservation_loss loss_g_inner.backward() optimizer_G_inner.step() writer.add_scalar("Loss_G_finetune", loss_g_inner.item(), STEPS) if iteration % 5 == 0: fine_sample_img = torch_utils.make_grid(torch.cat( [output.detach().clone(), target], dim=0), padding=2, normalize=False) if not os.path.exists(opt.fine_sample_dir): os.makedirs(opt.fine_sample_dir) torch_utils.save_image(fine_sample_img, os.path.join( opt.fine_sample_dir, "Epoch-{}--Iteration-{}.png".format( epoch, iteration)), padding=5) print("===> Finetuning Epoch[{}]({}/{}): G_Loss(finetune): {:.3}". format(epoch, iteration, total_num_examples, loss_g_inner.item(), (dt.datetime.now() - start_time).seconds)) start_time = dt.datetime.now() save_checkpoint(images_hr, images_lr, None, model_G, iteration, finetune=True) save_checkpoint(images_hr, images_lr, None, model_G, total_num_examples, finetune=True)
def main(): #### options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to option YMAL file.') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() opt = option.parse(args.opt, is_train=True) #### distributed training settings if args.launcher == 'none': # disabled distributed training opt['dist'] = False rank = -1 print('Disabled distributed training.') else: opt['dist'] = True init_dist() world_size = torch.distributed.get_world_size() rank = torch.distributed.get_rank() #### loading resume state if exists if opt['path'].get('resume_state', None): # distributed resuming: all load into default GPU device_id = torch.cuda.current_device() resume_state = torch.load( opt['path']['resume_state'], map_location=lambda storage, loc: storage.cuda(device_id)) option.check_resume(opt, resume_state['iter']) # check resume options else: resume_state = None #### mkdir and loggers if rank <= 0: # normal training (rank -1) OR distributed training (rank 0) if resume_state is None: util.mkdir_and_rename( opt['path'] ['experiments_root']) # rename experiment folder if exists util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) # config loggers. Before it, the log will not work util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO, screen=True, tofile=True) util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: version = float(torch.__version__[0:3]) if version >= 1.1: # PyTorch 1.1 from torch.utils.tensorboard import SummaryWriter else: logger.info( 'You are using PyTorch {}. Tensorboard will use [tensorboardX]' .format(version)) from tensorboardX import SummaryWriter tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt['name']) else: util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True) logger = logging.getLogger('base') # convert to NoneDict, which returns None for missing keys opt = option.dict_to_nonedict(opt) #### random seed seed = opt['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) if rank <= 0: logger.info('Random seed: {}'.format(seed)) util.set_random_seed(seed) torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True #### create train and val dataloader dataset_ratio = 200 # enlarge the size of each epoch for phase, dataset_opt in opt['datasets'].items(): if phase == 'train': train_set = create_dataset(dataset_opt) train_size = int( math.ceil(len(train_set) / dataset_opt['batch_size'])) total_iters = int(opt['train']['niter']) total_epochs = int(math.ceil(total_iters / train_size)) if opt['dist']: train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio) total_epochs = int( math.ceil(total_iters / (train_size * dataset_ratio))) else: train_sampler = None train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler) if rank <= 0: logger.info( 'Number of train images: {:,d}, iters: {:,d}'.format( len(train_set), train_size)) logger.info('Total epochs needed: {:d} for iters {:,d}'.format( total_epochs, total_iters)) elif phase == 'val': val_set = create_dataset(dataset_opt) val_loader = create_dataloader(val_set, dataset_opt, opt, None) if rank <= 0: logger.info('Number of val images in [{:s}]: {:d}'.format( dataset_opt['name'], len(val_set))) else: raise NotImplementedError( 'Phase [{:s}] is not recognized.'.format(phase)) assert train_loader is not None #### create model model = create_model(opt) #### resume training if resume_state: logger.info('Resuming training from epoch: {}, iter: {}.'.format( resume_state['epoch'], resume_state['iter'])) start_epoch = resume_state['epoch'] current_step = resume_state['iter'] model.resume_training(resume_state) # handle optimizers and schedulers else: current_step = 0 start_epoch = 0 #### training logger.info('Start training from epoch: {:d}, iter: {:d}'.format( start_epoch, current_step)) for epoch in range(start_epoch, total_epochs + 1): if opt['dist']: train_sampler.set_epoch(epoch) for _, train_data in enumerate(train_loader): current_step += 1 if current_step > total_iters: break #### update learning rate model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter']) #### training model.feed_data(train_data) model.optimize_parameters(current_step) #### log if current_step % opt['logger']['print_freq'] == 0: logs = model.get_current_log() message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format( epoch, current_step, model.get_current_learning_rate()) for k, v in logs.items(): message += '{:s}: {:.4e} '.format(k, v) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: if rank <= 0: tb_logger.add_scalar(k, v, current_step) if rank <= 0: logger.info(message) # validation if current_step % opt['train']['val_freq'] == 0 and rank <= 0: avg_psnr = 0.0 idx = 0 for val_data in val_loader: idx += 1 img_name = os.path.splitext( os.path.basename(val_data['LQ_path'][0]))[0] img_dir = os.path.join(opt['path']['val_images'], img_name) util.mkdir(img_dir) model.feed_data(val_data) model.test() visuals = model.get_current_visuals() sr_img = util.tensor2img(visuals['SR']) # uint8 gt_img = util.tensor2img(visuals['GT']) # uint8 # Save SR images for reference save_img_path = os.path.join( img_dir, '{:s}_{:d}.png'.format(img_name, current_step)) util.save_img(sr_img, save_img_path) # calculate PSNR crop_size = opt['scale'] gt_img = gt_img / 255. sr_img = sr_img / 255. cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size, :] cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size, :] avg_psnr += util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255) avg_psnr = avg_psnr / idx # log logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr)) logger_val = logging.getLogger('val') # validation logger logger_val.info( '<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e}'.format( epoch, current_step, avg_psnr)) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: tb_logger.add_scalar('psnr', avg_psnr, current_step) #### save models and training states if current_step % opt['logger']['save_checkpoint_freq'] == 0: if rank <= 0: logger.info('Saving models and training states.') model.save(current_step) model.save_training_state(epoch, current_step) if rank <= 0: logger.info('Saving the final model.') model.save('latest') logger.info('End of training.')
from data.LQGT_dataset import LQGTDataset from utils import crash_on_ipy import options.options as option opt_file = './options/train/train_ESRGAN_M.yml' opt = option.parse(opt_file, is_train=True) test_set = LQGTDataset(opt['datasets']['train']) for xx in test_set: print(type(xx), len(xx), xx['LQ'].shape, xx['GT'].shape)
from collections import OrderedDict import options.options as option import utils.util as util from data.util import bgr2ycbcr from data import create_dataset, create_dataloader from models import create_model if __name__ == '__main__': # options parser = argparse.ArgumentParser() parser.add_argument('--opt', type=str, default="options/test/test_ESRGAN.json", help='Path to options JSON file.') opt = option.parse(parser.parse_args().opt, is_train=False) util.mkdirs((path for key, path in opt['path'].items() if not key == 'pretrain_model_G')) opt = option.dict_to_nonedict(opt) util.setup_logger(None, opt['path']['log'], 'test.log', level=logging.INFO, screen=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) # Create test dataset and dataloader test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): test_set = create_dataset(dataset_opt)
def main(): parser = argparse.ArgumentParser(description='Test RCGAN model') parser.add_argument('-opt', type=str, required=True, help='Path to options JSON file.') opt = option.parse(parser.parse_args().opt) opt = option.dict_to_nonedict(opt) # create test dataloader dataset_opt = opt['datasets']['test'] if dataset_opt is None: raise ValueError("test dataset_opt is None!") test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt) if test_loader is None: raise ValueError("The test data does not exist") solver = RCGANModel(opt) solver.model_pth = opt['model_path'] solver.results_dir = os.path.join(opt['model_path'], 'results') solver.cmp_dir = os.path.join(opt['model_path'], 'cmp') # load model model_pth = os.path.join(solver.model_pth, 'RCGAN_model.pth') if model_pth is None: raise ValueError("model_pth' is required.") print('[Loading model from %s...]' % model_pth) model_dict = torch.load(model_pth) solver.model['netG'].load_state_dict(model_dict['state_dict_G']) print('=> Done.') print('[Start Testing]') test_bar = tqdm(test_loader) fused_list = [] path_list = [] if not os.path.exists(solver.cmp_dir): os.makedirs(solver.cmp_dir) for iter, batch in enumerate(test_bar): solver.feed_data(batch) solver.test() visuals_list = solver.get_current_visual_list() # fetch current iteration results as cpu tensor visuals = solver.get_current_visual() # fetch current iteration results as cpu tensor images = torch.stack(visuals_list) saveimg = thutil.make_grid(images, nrow=3, padding=5) saveimg_nd = saveimg.byte().permute(1, 2, 0).numpy() img_name = os.path.splitext(os.path.basename(batch['VIS_path'][0]))[0] imageio.imwrite(os.path.join(solver.cmp_dir, 'comp_%s.bmp' % (img_name)), saveimg_nd) fused_img = visuals['img_fuse'] fused_img = np.transpose(util.quantize(fused_img).numpy(), (1, 2, 0)).astype(np.uint8).squeeze() fused_list.append(fused_img) path_list.append(img_name) save_img_path = solver.results_dir if not os.path.exists(save_img_path): os.makedirs(save_img_path) for img, img_name in zip(fused_list, path_list): imageio.imwrite(os.path.join(solver.results_dir, img_name + '.bmp'), img) test_bar.close()
import gym import torch from util import NormalizedActions from collections import deque from agent import Agent import numpy as np from options import options options = options() opts = options.parse() batch = opts.batch env = NormalizedActions(gym.make('BipedalWalker-v2')) from IPython.display import clear_output import matplotlib.pyplot as plt policy = Agent(env) def plot(frame_idx, rewards): clear_output(True) plt.figure(figsize=(20,5)) plt.subplot(131) plt.title('Episode %s. reward: %s' % (frame_idx, rewards[-1])) plt.plot(rewards) plt.show() rewards = []
def main(): #### options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to option YAML file.') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() opt = option.parse(args.opt, is_train=True) #### distributed training settings if args.launcher == 'none': # disabled distributed training opt['dist'] = False rank = -1 print('Disabled distributed training.') else: opt['dist'] = True init_dist() world_size = torch.distributed.get_world_size() rank = torch.distributed.get_rank() #### loading resume state if exists if opt['path'].get('resume_state', None): # distributed resuming: all load into default GPU device_id = torch.cuda.current_device() resume_state = torch.load( opt['path']['resume_state'], map_location=lambda storage, loc: storage.cuda(device_id)) option.check_resume(opt, resume_state['iter']) # check resume options else: resume_state = None #### mkdir and loggers if rank <= 0: # normal training (rank -1) OR distributed training (rank 0) if resume_state is None: util.mkdir_and_rename( opt['path'] ['experiments_root']) # rename experiment folder if exists util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key and 'wandb_load_run_path' not in key)) # config loggers. Before it, the log will not work util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: version = float(torch.__version__[0:3]) if version >= 1.1: # PyTorch 1.1 from torch.utils.tensorboard import SummaryWriter else: logger.info( 'You are using PyTorch {}. Tensorboard will use [tensorboardX]' .format(version)) from tensorboardX import SummaryWriter tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt['name']) if opt['use_wandb_logger'] and 'debug' not in opt['name']: json_path = os.path.join(os.path.expanduser('~'), '.wandb_api_keys.json') if os.path.exists(json_path): with open(json_path, 'r') as j: json_file = json.loads(j.read()) os.environ['WANDB_API_KEY'] = json_file['ryul99'] wandb.init(project="mmsr", config=opt, sync_tensorboard=True) else: util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True) logger = logging.getLogger('base') # convert to NoneDict, which returns None for missing keys opt = option.dict_to_nonedict(opt) #### random seed seed = opt['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) if rank <= 0: logger.info('Random seed: {}'.format(seed)) if opt['use_wandb_logger'] and 'debug' not in opt['name']: wandb.config.update({'random_seed': seed}) util.set_random_seed(seed) torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True #### create train and val dataloader dataset_ratio = 200 # enlarge the size of each epoch for phase, dataset_opt in opt['datasets'].items(): if phase == 'train': train_set = create_dataset(dataset_opt) train_size = int( math.ceil(len(train_set) / dataset_opt['batch_size'])) total_iters = int(opt['train']['niter']) total_epochs = int(math.ceil(total_iters / train_size)) if opt['dist']: train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio) total_epochs = int( math.ceil(total_iters / (train_size * dataset_ratio))) else: train_sampler = None train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler) if rank <= 0: logger.info( 'Number of train images: {:,d}, iters: {:,d}'.format( len(train_set), train_size)) logger.info('Total epochs needed: {:d} for iters {:,d}'.format( total_epochs, total_iters)) elif phase == 'val': val_set = create_dataset(dataset_opt) val_loader = create_dataloader(val_set, dataset_opt, opt, None) if rank <= 0: logger.info('Number of val images in [{:s}]: {:d}'.format( dataset_opt['name'], len(val_set))) else: raise NotImplementedError( 'Phase [{:s}] is not recognized.'.format(phase)) assert train_loader is not None #### create model model = create_model(opt) #### resume training if resume_state: logger.info('Resuming training from epoch: {}, iter: {}.'.format( resume_state['epoch'], resume_state['iter'])) start_epoch = resume_state['epoch'] current_step = resume_state['iter'] model.resume_training(resume_state) # handle optimizers and schedulers else: current_step = 0 start_epoch = 0 #### training logger.info('Start training from epoch: {:d}, iter: {:d}'.format( start_epoch, current_step)) for epoch in range(start_epoch, total_epochs + 1): if opt['dist']: train_sampler.set_epoch(epoch) for _, train_data in enumerate(train_loader): current_step += 1 if current_step > total_iters: break #### update learning rate model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter']) #### training model.feed_data(train_data, noise_mode=opt['datasets']['train']['noise_mode'], noise_rate=opt['datasets']['train']['noise_rate']) model.optimize_parameters(current_step) #### log if current_step % opt['logger']['print_freq'] == 0: logs = model.get_current_log() message = '[epoch:{:3d}, iter:{:8,d}, lr:('.format( epoch, current_step) for v in model.get_current_learning_rate(): message += '{:.3e},'.format(v) message += ')] ' for k, v in logs.items(): message += '{:s}: {:.4e} '.format(k, v) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: if rank <= 0: tb_logger.add_scalar(k, v, current_step) if opt['use_wandb_logger'] and 'debug' not in opt['name']: if rank <= 0: wandb.log({k: v}, step=current_step) if rank <= 0: logger.info(message) #### validation if opt['datasets'].get( 'val', None) and current_step % opt['train']['val_freq'] == 0: if opt['model'] in [ 'sr', 'srgan' ] and rank <= 0: # image restoration validation # does not support multi-GPU validation pbar = util.ProgressBar(len(val_loader)) avg_psnr = 0. idx = 0 for val_data in val_loader: idx += 1 img_name = os.path.splitext( os.path.basename(val_data['LQ_path'][0]))[0] img_dir = os.path.join(opt['path']['val_images'], img_name) util.mkdir(img_dir) model.feed_data( val_data, noise_mode=opt['datasets']['val']['noise_mode'], noise_rate=opt['datasets']['val']['noise_rate']) model.test() visuals = model.get_current_visuals() sr_img = util.tensor2img(visuals['rlt']) # uint8 gt_img = util.tensor2img(visuals['GT']) # uint8 # Save SR images for reference save_img_path = os.path.join( img_dir, '{:s}_{:d}.png'.format(img_name, current_step)) util.save_img(sr_img, save_img_path) # calculate PSNR sr_img, gt_img = util.crop_border([sr_img, gt_img], opt['scale']) avg_psnr += util.calculate_psnr(sr_img, gt_img) pbar.update('Test {}'.format(img_name)) avg_psnr = avg_psnr / idx # log logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr)) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: tb_logger.add_scalar('psnr', avg_psnr, current_step) if opt['use_wandb_logger'] and 'debug' not in opt['name']: wandb.log({'psnr': avg_psnr}, step=current_step) else: # video restoration validation if opt['dist']: # multi-GPU testing psnr_rlt = {} # with border and center frames if rank == 0: pbar = util.ProgressBar(len(val_set)) for idx in range(rank, len(val_set), world_size): val_data = val_set[idx] val_data['LQs'].unsqueeze_(0) val_data['GT'].unsqueeze_(0) folder = val_data['folder'] idx_d, max_idx = val_data['idx'].split('/') idx_d, max_idx = int(idx_d), int(max_idx) if psnr_rlt.get(folder, None) is None: psnr_rlt[folder] = torch.zeros( max_idx, dtype=torch.float32, device='cuda') # tmp = torch.zeros(max_idx, dtype=torch.float32, device='cuda') model.feed_data(val_data, noise_mode=opt['datasets']['val'] ['noise_mode'], noise_rate=opt['datasets']['val'] ['noise_rate']) model.test() visuals = model.get_current_visuals() rlt_img = util.tensor2img(visuals['rlt']) # uint8 gt_img = util.tensor2img(visuals['GT']) # uint8 # calculate PSNR psnr_rlt[folder][idx_d] = util.calculate_psnr( rlt_img, gt_img) if rank == 0: for _ in range(world_size): pbar.update('Test {} - {}/{}'.format( folder, idx_d, max_idx)) # # collect data for _, v in psnr_rlt.items(): dist.reduce(v, 0) dist.barrier() if rank == 0: psnr_rlt_avg = {} psnr_total_avg = 0. for k, v in psnr_rlt.items(): psnr_rlt_avg[k] = torch.mean(v).cpu().item() psnr_total_avg += psnr_rlt_avg[k] psnr_total_avg /= len(psnr_rlt) log_s = '# Validation # PSNR: {:.4e}:'.format( psnr_total_avg) for k, v in psnr_rlt_avg.items(): log_s += ' {}: {:.4e}'.format(k, v) logger.info(log_s) if opt['use_tb_logger'] and 'debug' not in opt[ 'name']: tb_logger.add_scalar('psnr_avg', psnr_total_avg, current_step) for k, v in psnr_rlt_avg.items(): tb_logger.add_scalar(k, v, current_step) if opt['use_wandb_logger'] and 'debug' not in opt[ 'name']: lq_img, rlt_img, gt_img = map( util.tensor2img, [ visuals['LQ'], visuals['rlt'], visuals['GT'] ]) wandb.log({'psnr_avg': psnr_total_avg}, step=current_step) wandb.log(psnr_rlt_avg, step=current_step) wandb.log( { 'Validation Image': [ wandb.Image(lq_img[:, :, [2, 1, 0]], caption='LQ'), wandb.Image(rlt_img[:, :, [2, 1, 0]], caption='output'), wandb.Image(gt_img[:, :, [2, 1, 0]], caption='GT'), ] }, step=current_step) else: pbar = util.ProgressBar(len(val_loader)) psnr_rlt = {} # with border and center frames psnr_rlt_avg = {} psnr_total_avg = 0. for val_data in val_loader: folder = val_data['folder'][0] idx_d = val_data['idx'].item() # border = val_data['border'].item() if psnr_rlt.get(folder, None) is None: psnr_rlt[folder] = [] model.feed_data(val_data, noise_mode=opt['datasets']['val'] ['noise_mode'], noise_rate=opt['datasets']['val'] ['noise_rate']) model.test() visuals = model.get_current_visuals() rlt_img = util.tensor2img(visuals['rlt']) # uint8 gt_img = util.tensor2img(visuals['GT']) # uint8 # calculate PSNR psnr = util.calculate_psnr(rlt_img, gt_img) psnr_rlt[folder].append(psnr) pbar.update('Test {} - {}'.format(folder, idx_d)) for k, v in psnr_rlt.items(): psnr_rlt_avg[k] = sum(v) / len(v) psnr_total_avg += psnr_rlt_avg[k] psnr_total_avg /= len(psnr_rlt) log_s = '# Validation # PSNR: {:.4e}:'.format( psnr_total_avg) for k, v in psnr_rlt_avg.items(): log_s += ' {}: {:.4e}'.format(k, v) logger.info(log_s) if opt['use_tb_logger'] and 'debug' not in opt['name']: tb_logger.add_scalar('psnr_avg', psnr_total_avg, current_step) for k, v in psnr_rlt_avg.items(): tb_logger.add_scalar(k, v, current_step) if opt['use_wandb_logger'] and 'debug' not in opt[ 'name']: lq_img, rlt_img, gt_img = map( util.tensor2img, [visuals['LQ'], visuals['rlt'], visuals['GT']]) wandb.log({'psnr_avg': psnr_total_avg}, step=current_step) wandb.log(psnr_rlt_avg, step=current_step) wandb.log( { 'Validation Image': [ wandb.Image(lq_img[:, :, [2, 1, 0]], caption='LQ'), wandb.Image(rlt_img[:, :, [2, 1, 0]], caption='output'), wandb.Image(gt_img[:, :, [2, 1, 0]], caption='GT'), ] }, step=current_step) #### save models and training states if current_step % opt['logger']['save_checkpoint_freq'] == 0: if rank <= 0: logger.info('Saving models and training states.') model.save(current_step) model.save_training_state(epoch, current_step) if rank <= 0: logger.info('Saving the final model.') model.save('latest') logger.info('End of training.') if opt['use_tb_logger'] and 'debug' not in opt['name']: tb_logger.close()
def main(): ################# # configurations ################# parser = argparse.ArgumentParser() parser.add_argument("--input_path", type=str, required=True) # parser.add_argument("--gt_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) parser.add_argument("--model_path", type=str, required=True) parser.add_argument("--gpu_id", type=str, required=True) parser.add_argument("--gpu_number", type=str, required=True) parser.add_argument("--gpu_index", type=str, required=True) parser.add_argument("--screen_notation", type=str, required=True) parser.add_argument('--opt', type=str, required=True, help='Path to option YAML file.') args = parser.parse_args() opt = option.parse(args.opt, is_train=False) gpu_number = int(args.gpu_number) gpu_index = int(args.gpu_index) PAD = 32 total_run_time = AverageMeter() # print("GPU ", torch.cuda.device_count()) device = torch.device('cuda') # os.environ['CUDA_VISIBLE_DEVICES'] = '0' os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id) print('export CUDA_VISIBLE_DEVICES=' + str(args.gpu_id)) data_mode = 'sharp_bicubic' # Vid4 | sharp_bicubic | blur_bicubic | blur | blur_comp # Vid4: SR # REDS4: sharp_bicubic (SR-clean), blur_bicubic (SR-blur); # blur (deblur-clean), blur_comp (deblur-compression). stage = 1 # 1 or 2, use two stage strategy for REDS dataset. flip_test = False # Input_folder = "/DATA7_DB7/data/4khdr/data/Dataset/train_sharp_bicubic" # GT_folder = "/DATA7_DB7/data/4khdr/data/Dataset/train_4k" # Result_folder = "/DATA7_DB7/data/4khdr/data/Results" Input_folder = args.input_path # GT_folder = args.gt_path Result_folder = args.output_path Model_path = args.model_path # create results folder if not os.path.exists(Result_folder): os.makedirs(Result_folder, exist_ok=True) ############################################################################ #### model # if data_mode == 'Vid4': # if stage == 1: # model_path = '../experiments/pretrained_models/EDVR_Vimeo90K_SR_L.pth' # else: # raise ValueError('Vid4 does not support stage 2.') # elif data_mode == 'sharp_bicubic': # if stage == 1: # # model_path = '../experiments/pretrained_models/EDVR_REDS_SR_L.pth' # else: # model_path = '../experiments/pretrained_models/EDVR_REDS_SR_Stage2.pth' # elif data_mode == 'blur_bicubic': # if stage == 1: # model_path = '../experiments/pretrained_models/EDVR_REDS_SRblur_L.pth' # else: # model_path = '../experiments/pretrained_models/EDVR_REDS_SRblur_Stage2.pth' # elif data_mode == 'blur': # if stage == 1: # model_path = '../experiments/pretrained_models/EDVR_REDS_deblur_L.pth' # else: # model_path = '../experiments/pretrained_models/EDVR_REDS_deblur_Stage2.pth' # elif data_mode == 'blur_comp': # if stage == 1: # model_path = '../experiments/pretrained_models/EDVR_REDS_deblurcomp_L.pth' # else: # model_path = '../experiments/pretrained_models/EDVR_REDS_deblurcomp_Stage2.pth' # else: # raise NotImplementedError model_path = Model_path if data_mode == 'Vid4': N_in = 7 # use N_in images to restore one HR image else: N_in = 5 predeblur, HR_in = False, False back_RBs = 40 if data_mode == 'blur_bicubic': predeblur = True if data_mode == 'blur' or data_mode == 'blur_comp': predeblur, HR_in = True, True if stage == 2: HR_in = True back_RBs = 20 model = EDVR_arch.EDVR(nf=opt['network_G']['nf'], nframes=opt['network_G']['nframes'], groups=opt['network_G']['groups'], front_RBs=opt['network_G']['front_RBs'], back_RBs=opt['network_G']['back_RBs'], predeblur=opt['network_G']['predeblur'], HR_in=opt['network_G']['HR_in'], w_TSA=opt['network_G']['w_TSA']) # model = EDVR_arch.EDVR(128, N_in, 8, 5, back_RBs, predeblur=predeblur, HR_in=HR_in) #### dataset if data_mode == 'Vid4': test_dataset_folder = '../datasets/Vid4/BIx4' GT_dataset_folder = '../datasets/Vid4/GT' else: if stage == 1: # test_dataset_folder = '../datasets/REDS4/{}'.format(data_mode) # test_dataset_folder = '/DATA/wangshen_data/REDS/val_sharp_bicubic/X4' test_dataset_folder = Input_folder else: test_dataset_folder = '../results/REDS-EDVR_REDS_SR_L_flipx4' print('You should modify the test_dataset_folder path for stage 2') # GT_dataset_folder = '../datasets/REDS4/GT' # GT_dataset_folder = '/DATA/wangshen_data/REDS/val_sharp' # GT_dataset_folder = GT_folder #### evaluation crop_border = 0 border_frame = N_in // 2 # border frames when evaluate # temporal padding mode if data_mode == 'Vid4' or data_mode == 'sharp_bicubic': padding = 'new_info' else: padding = 'replicate' save_imgs = True # save_folder = '../results/{}'.format(data_mode) # save_folder = '/DATA/wangshen_data/REDS/results/{}'.format(data_mode) save_folder = os.path.join(Result_folder, data_mode) util.mkdirs(save_folder) util.setup_logger('base', save_folder, 'test', level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') #### log info logger.info('Data: {} - {}'.format(data_mode, test_dataset_folder)) logger.info('Padding mode: {}'.format(padding)) logger.info('Model path: {}'.format(model_path)) logger.info('Save images: {}'.format(save_imgs)) logger.info('Flip test: {}'.format(flip_test)) #### set up the models model.load_state_dict(torch.load(model_path), strict=True) model.eval() model = model.to(device) avg_psnr_l, avg_psnr_center_l, avg_psnr_border_l = [], [], [] subfolder_name_l = [] subfolder_l = sorted(glob.glob(osp.join(test_dataset_folder, '*'))) # subfolder_GT_l = sorted(glob.glob(osp.join(GT_dataset_folder, '*'))) # for each subfolder # for subfolder, subfolder_GT in zip(subfolder_l, subfolder_GT_l): end = time.time() # load screen change notation import json with open(args.screen_notation) as f: frame_notation = json.load(f) subfolder_n = len(subfolder_l) subfolder_l = subfolder_l[int(subfolder_n * gpu_index / gpu_number):int(subfolder_n * (gpu_index + 1) / gpu_number)] for subfolder in subfolder_l: input_subfolder = os.path.split(subfolder)[1] # subfolder_GT = os.path.join(GT_dataset_folder,input_subfolder) #if not os.path.exists(subfolder_GT): # continue print("Evaluate Folders: ", input_subfolder) subfolder_name = osp.basename(subfolder) subfolder_name_l.append(subfolder_name) save_subfolder = osp.join(save_folder, subfolder_name) img_path_l = sorted(glob.glob(osp.join(subfolder, '*'))) max_idx = len(img_path_l) if save_imgs: util.mkdirs(save_subfolder) #### read LQ and GT images imgs_LQ = data_util.read_img_seq(subfolder) # Num x 3 x H x W #img_GT_l = [] #for img_GT_path in sorted(glob.glob(osp.join(subfolder_GT, '*'))): # img_GT_l.append(data_util.read_img(None, img_GT_path)) #avg_psnr, avg_psnr_border, avg_psnr_center, N_border, N_center = 0, 0, 0, 0, 0 # process each image for img_idx, img_path in enumerate(img_path_l): img_name = osp.splitext(osp.basename(img_path))[0] # todo here handle screen change select_idx, log1, log2, nota = data_util.index_generation_process_screen_change_withlog_fixbug( input_subfolder, frame_notation, img_idx, max_idx, N_in, padding=padding) if not log1 == None: logger.info('screen change') logger.info(nota) logger.info(log1) logger.info(log2) imgs_in = imgs_LQ.index_select( 0, torch.LongTensor(select_idx)).unsqueeze(0).to( device) # 960 x 540 # here we split the input images 960x540 into 9 320x180 patch gtWidth = 3840 gtHeight = 2160 intWidth_ori = imgs_in.shape[4] # 960 intHeight_ori = imgs_in.shape[3] # 540 split_lengthY = 180 split_lengthX = 320 scale = 4 intPaddingRight_ = int(float(intWidth_ori) / split_lengthX + 1) * split_lengthX - intWidth_ori intPaddingBottom_ = int(float(intHeight_ori) / split_lengthY + 1) * split_lengthY - intHeight_ori intPaddingRight_ = 0 if intPaddingRight_ == split_lengthX else intPaddingRight_ intPaddingBottom_ = 0 if intPaddingBottom_ == split_lengthY else intPaddingBottom_ pader0 = torch.nn.ReplicationPad2d( [0, intPaddingRight_, 0, intPaddingBottom_]) print("Init pad right/bottom " + str(intPaddingRight_) + " / " + str(intPaddingBottom_)) intPaddingRight = PAD # 32# 64# 128# 256 intPaddingLeft = PAD # 32#64 #128# 256 intPaddingTop = PAD # 32#64 #128#256 intPaddingBottom = PAD # 32#64 # 128# 256 pader = torch.nn.ReplicationPad2d([ intPaddingLeft, intPaddingRight, intPaddingTop, intPaddingBottom ]) imgs_in = torch.squeeze(imgs_in, 0) # N C H W imgs_in = pader0(imgs_in) # N C 540 960 imgs_in = pader(imgs_in) # N C 604 1024 assert (split_lengthY == int(split_lengthY) and split_lengthX == int(split_lengthX)) split_lengthY = int(split_lengthY) split_lengthX = int(split_lengthX) split_numY = int(float(intHeight_ori) / split_lengthY) split_numX = int(float(intWidth_ori) / split_lengthX) splitsY = range(0, split_numY) splitsX = range(0, split_numX) intWidth = split_lengthX intWidth_pad = intWidth + intPaddingLeft + intPaddingRight intHeight = split_lengthY intHeight_pad = intHeight + intPaddingTop + intPaddingBottom # print("split " + str(split_numY) + ' , ' + str(split_numX)) y_all = np.zeros((gtHeight, gtWidth, 3), dtype="float32") # HWC for split_j, split_i in itertools.product(splitsY, splitsX): # print(str(split_j) + ", \t " + str(split_i)) X0 = imgs_in[:, :, split_j * split_lengthY:(split_j + 1) * split_lengthY + intPaddingBottom + intPaddingTop, split_i * split_lengthX:(split_i + 1) * split_lengthX + intPaddingRight + intPaddingLeft] # y_ = torch.FloatTensor() X0 = torch.unsqueeze(X0, 0) # N C H W -> 1 N C H W if flip_test: output = util.flipx4_forward(model, X0) else: output = util.single_forward(model, X0) output_depadded = output[0, :, intPaddingTop * scale:(intPaddingTop + intHeight) * scale, intPaddingLeft * scale:(intPaddingLeft + intWidth) * scale] output_depadded = output_depadded.squeeze(0) output = util.tensor2img(output_depadded) y_all[split_j * split_lengthY * scale :(split_j + 1) * split_lengthY * scale, split_i * split_lengthX * scale :(split_i + 1) * split_lengthX * scale, :] = \ np.round(output).astype(np.uint8) # plt.figure(0) # plt.title("pic") # plt.imshow(y_all) if save_imgs: cv2.imwrite( osp.join(save_subfolder, '{}.png'.format(img_name)), y_all) print("*****************current image process time \t " + str(time.time() - end) + "s ******************") total_run_time.update(time.time() - end, 1) # calculate PSNR #y_all = y_all / 255. #GT = np.copy(img_GT_l[img_idx]) # For REDS, evaluate on RGB channels; for Vid4, evaluate on the Y channel #if data_mode == 'Vid4': # bgr2y, [0, 1] # GT = data_util.bgr2ycbcr(GT, only_y=True) # y_all = data_util.bgr2ycbcr(y_all, only_y=True) #y_all, GT = util.crop_border([y_all, GT], crop_border) #crt_psnr = util.calculate_psnr(y_all * 255, GT * 255) #logger.info('{:3d} - {:25} \tPSNR: {:.6f} dB'.format(img_idx + 1, img_name, crt_psnr)) logger.info('{} : {:3d} - {:25} \t'.format(input_subfolder, img_idx + 1, img_name)) #if img_idx >= border_frame and img_idx < max_idx - border_frame: # center frames # avg_psnr_center += crt_psnr # N_center += 1 #else: # border frames # avg_psnr_border += crt_psnr # N_border += 1 #avg_psnr = (avg_psnr_center + avg_psnr_border) / (N_center + N_border) #avg_psnr_center = avg_psnr_center / N_center #avg_psnr_border = 0 if N_border == 0 else avg_psnr_border / N_border #avg_psnr_l.append(avg_psnr) #avg_psnr_center_l.append(avg_psnr_center) #avg_psnr_border_l.append(avg_psnr_border) #logger.info('Folder {} - Average PSNR: {:.6f} dB for {} frames; ' # 'Center PSNR: {:.6f} dB for {} frames; ' # 'Border PSNR: {:.6f} dB for {} frames.'.format(subfolder_name, avg_psnr, # (N_center + N_border), # avg_psnr_center, N_center, # avg_psnr_border, N_border)) #logger.info('################ Tidy Outputs ################') #for subfolder_name, psnr, psnr_center, psnr_border in zip(subfolder_name_l, avg_psnr_l, # avg_psnr_center_l, avg_psnr_border_l): # logger.info('Folder {} - Average PSNR: {:.6f} dB. ' # 'Center PSNR: {:.6f} dB. ' # 'Border PSNR: {:.6f} dB.'.format(subfolder_name, psnr, psnr_center, # psnr_border)) #logger.info('################ Final Results ################') logger.info('Data: {} - {}'.format(data_mode, test_dataset_folder)) logger.info('Padding mode: {}'.format(padding)) logger.info('Model path: {}'.format(model_path)) logger.info('Save images: {}'.format(save_imgs)) logger.info('Flip test: {}'.format(flip_test))
def main(): #### setup options of three networks parser = argparse.ArgumentParser() parser.add_argument('-opt_P', type=str, help='Path to option YMAL file of Predictor.') parser.add_argument('-opt_C', type=str, help='Path to option YMAL file of Corrector.') parser.add_argument('-opt_F', type=str, help='Path to option YMAL file of SFTMD_Net.') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() opt_P = option.parse(args.opt_P, is_train=True) opt_C = option.parse(args.opt_C, is_train=True) opt_F = option.parse(args.opt_F, is_train=True) # convert to NoneDict, which returns None for missing keys opt_P = option.dict_to_nonedict(opt_P) opt_C = option.dict_to_nonedict(opt_C) opt_F = option.dict_to_nonedict(opt_F) # choose small opt for SFTMD test, fill path of pre-trained model_F opt_F = opt_F['sftmd'] # create PCA matrix of enough kernel batch_ker = util.random_batch_kernel(batch=30000, l=opt_P['kernel_size'], sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=3, tensor=False) print('batch kernel shape: {}'.format(batch_ker.shape)) b = np.size(batch_ker, 0) batch_ker = batch_ker.reshape((b, -1)) pca_matrix = util.PCA(batch_ker, k=opt_P['code_length']).float() print('PCA matrix shape: {}'.format(pca_matrix.shape)) #### distributed training settings if args.launcher == 'none': # disabled distributed training opt_P['dist'] = False opt_F['dist'] = False opt_C['dist'] = False rank = -1 print('Disabled distributed training.') else: opt_P['dist'] = True opt_F['dist'] = True opt_C['dist'] = True init_dist() world_size = torch.distributed.get_world_size( ) #Returns the number of processes in the current process group rank = torch.distributed.get_rank( ) #Returns the rank of current process group torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True ###### Predictor&Corrector train ###### #### loading resume state if exists if opt_P['path'].get('resume_state', None): # distributed resuming: all load into default GPU device_id = torch.cuda.current_device() resume_state = torch.load( opt_P['path']['resume_state'], map_location=lambda storage, loc: storage.cuda(device_id)) option.check_resume(opt_P, resume_state['iter']) # check resume options else: resume_state = None #### mkdir and loggers if rank <= 0: # normal training (rank -1) OR distributed training (rank 0-7) if resume_state is None: # Predictor path util.mkdir_and_rename( opt_P['path'] ['experiments_root']) # rename experiment folder if exists util.mkdirs( (path for key, path in opt_P['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) # Corrector path util.mkdir_and_rename( opt_C['path'] ['experiments_root']) # rename experiment folder if exists util.mkdirs( (path for key, path in opt_C['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) # config loggers. Before it, the log will not work util.setup_logger('base', opt_P['path']['log'], 'train_' + opt_P['name'], level=logging.INFO, screen=True, tofile=True) util.setup_logger('val', opt_P['path']['log'], 'val_' + opt_P['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt_P)) logger.info(option.dict2str(opt_C)) # tensorboard logger if opt_P['use_tb_logger'] and 'debug' not in opt_P['name']: version = float(torch.__version__[0:3]) if version >= 1.1: # PyTorch 1.1 from torch.utils.tensorboard import SummaryWriter else: logger.info( 'You are using PyTorch {}. Tensorboard will use [tensorboardX]' .format(version)) from tensorboardX import SummaryWriter tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt_P['name']) else: util.setup_logger('base', opt_P['path']['log'], 'train', level=logging.INFO, screen=True) logger = logging.getLogger('base') #### random seed seed = opt_P['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) if rank <= 0: logger.info('Random seed: {}'.format(seed)) util.set_random_seed(seed) torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True #### create train and val dataloader dataset_ratio = 200 # enlarge the size of each epoch for phase, dataset_opt in opt_P['datasets'].items(): if phase == 'train': train_set = create_dataset(dataset_opt) train_size = int( math.ceil(len(train_set) / dataset_opt['batch_size'])) total_iters = int(opt_P['train']['niter']) total_epochs = int(math.ceil(total_iters / train_size)) if opt_P['dist']: train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio) total_epochs = int( math.ceil(total_iters / (train_size * dataset_ratio))) else: train_sampler = None train_loader = create_dataloader(train_set, dataset_opt, opt_P, train_sampler) if rank <= 0: logger.info( 'Number of train images: {:,d}, iters: {:,d}'.format( len(train_set), train_size)) logger.info('Total epochs needed: {:d} for iters {:,d}'.format( total_epochs, total_iters)) elif phase == 'val': val_set = create_dataset(dataset_opt) val_loader = create_dataloader(val_set, dataset_opt, opt_P, None) if rank <= 0: logger.info('Number of val images in [{:s}]: {:d}'.format( dataset_opt['name'], len(val_set))) else: raise NotImplementedError( 'Phase [{:s}] is not recognized.'.format(phase)) assert train_loader is not None assert val_loader is not None #### create model model_F = create_model(opt_F) #load pretrained model of SFTMD model_P = create_model(opt_P) model_C = create_model(opt_C) #### resume training if resume_state: logger.info('Resuming training from epoch: {}, iter: {}.'.format( resume_state['epoch'], resume_state['iter'])) start_epoch = resume_state['epoch'] current_step = resume_state['iter'] model_P.resume_training( resume_state) # handle optimizers and schedulers else: current_step = 0 start_epoch = 0 #### training logger.info('Start training from epoch: {:d}, iter: {:d}'.format( start_epoch, current_step)) for epoch in range(start_epoch, total_epochs + 1): if opt_P['dist']: train_sampler.set_epoch(epoch) for _, train_data in enumerate(train_loader): current_step += 1 if current_step > total_iters: break #### update learning rate, schedulers # model.update_learning_rate(current_step, warmup_iter=opt_P['train']['warmup_iter']) #### preprocessing for LR_img and kernel map prepro = util.SRMDPreprocessing(opt_P['scale'], pca_matrix, para_input=opt_P['code_length'], kernel=opt_P['kernel_size'], noise=False, cuda=True, sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=3, rate_cln=0.2, noise_high=0.0) LR_img, ker_map = prepro(train_data['GT']) #### training Predictor model_P.feed_data(LR_img, ker_map) model_P.optimize_parameters(current_step) P_visuals = model_P.get_current_visuals() est_ker_map = P_visuals['Batch_est_ker_map'] #### log of model_P if current_step % opt_P['logger']['print_freq'] == 0: logs = model_P.get_current_log() message = 'Predictor <epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format( epoch, current_step, model_P.get_current_learning_rate()) for k, v in logs.items(): message += '{:s}: {:.4e} '.format(k, v) # tensorboard logger if opt_P['use_tb_logger'] and 'debug' not in opt_P['name']: if rank <= 0: tb_logger.add_scalar(k, v, current_step) if rank <= 0: logger.info(message) #### training Corrector for step in range(opt_C['step']): # test SFTMD for corresponding SR image model_F.feed_data(train_data, LR_img, est_ker_map) model_F.test() F_visuals = model_F.get_current_visuals() SR_img = F_visuals['Batch_SR'] # Test SFTMD to produce SR images # train corrector given SR image and estimated kernel map model_C.feed_data(SR_img, est_ker_map, ker_map) model_C.optimize_parameters(current_step) C_visuals = model_C.get_current_visuals() est_ker_map = C_visuals['Batch_est_ker_map'] #### log of model_C if current_step % opt_C['logger']['print_freq'] == 0: logs = model_C.get_current_log() message = 'Corrector <epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format( epoch, current_step, model_C.get_current_learning_rate()) for k, v in logs.items(): message += '{:s}: {:.4e} '.format(k, v) # tensorboard logger if opt_C['use_tb_logger'] and 'debug' not in opt_C[ 'name']: if rank <= 0: tb_logger.add_scalar(k, v, current_step) if rank <= 0: logger.info(message) # validation, to produce ker_map_list(fake) if current_step % opt_P['train']['val_freq'] == 0 and rank <= 0: avg_psnr = 0.0 idx = 0 for _, val_data in enumerate(val_loader): prepro = util.SRMDPreprocessing( opt_P['scale'], pca_matrix, para_input=opt_P['code_length'], kernel=opt_P['kernel_size'], noise=False, cuda=True, sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=3, rate_cln=0.2, noise_high=0.0) LR_img, ker_map = prepro(val_data['GT']) single_img_psnr = 0.0 # valid Predictor model_P.feed_data(LR_img, ker_map) model_P.test() P_visuals = model_P.get_current_visuals() est_ker_map = P_visuals['Batch_est_ker_map'] for step in range(opt_C['step']): step += 1 idx += 1 model_F.feed_data(val_data, LR_img, est_ker_map) model_F.test() F_visuals = model_F.get_current_visuals() SR_img = F_visuals['Batch_SR'] # Test SFTMD to produce SR images model_C.feed_data(SR_img, est_ker_map, ker_map) model_C.test() C_visuals = model_C.get_current_visuals() est_ker_map = C_visuals['Batch_est_ker_map'] sr_img = util.tensor2img(F_visuals['SR']) # uint8 gt_img = util.tensor2img(F_visuals['GT']) # uint8 # Save SR images for reference img_name = os.path.splitext( os.path.basename(val_data['LQ_path'][0]))[0] img_dir = os.path.join(opt_P['path']['val_images'], img_name) # img_dir = os.path.join(opt_F['path']['val_images'], str(current_step), '_', str(step)) util.mkdir(img_dir) save_img_path = os.path.join( img_dir, '{:s}_{:d}_{:d}.png'.format( img_name, current_step, step)) util.save_img(sr_img, save_img_path) # calculate PSNR crop_size = opt_P['scale'] gt_img = gt_img / 255. sr_img = sr_img / 255. cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size, :] cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size, :] step_psnr = util.calculate_psnr( cropped_sr_img * 255, cropped_gt_img * 255) logger.info( '<epoch:{:3d}, iter:{:8,d}, step:{:3d}> img:{:s}, psnr: {:.4f}' .format(epoch, current_step, step, img_name, step_psnr)) single_img_psnr += step_psnr avg_psnr += util.calculate_psnr( cropped_sr_img * 255, cropped_gt_img * 255) avg_signle_img_psnr = single_img_psnr / step logger.info( '<epoch:{:3d}, iter:{:8,d}, step:{:3d}> img:{:s}, average psnr: {:.4f}' .format(epoch, current_step, step, img_name, avg_signle_img_psnr)) avg_psnr = avg_psnr / idx # log logger.info('# Validation # PSNR: {:.4f}'.format(avg_psnr)) logger_val = logging.getLogger('val') # validation logger logger_val.info( '<epoch:{:3d}, iter:{:8,d}, step:{:3d}> psnr: {:.4f}'. format(epoch, current_step, step, avg_psnr)) # tensorboard logger if opt_P['use_tb_logger'] and 'debug' not in opt_P['name']: tb_logger.add_scalar('psnr', avg_psnr, current_step) #### save models and training states if current_step % opt_P['logger']['save_checkpoint_freq'] == 0: if rank <= 0: logger.info('Saving models and training states.') model_P.save(current_step) model_P.save_training_state(epoch, current_step) model_C.save(current_step) model_C.save_training_state(epoch, current_step) if rank <= 0: logger.info('Saving the final model.') model_P.save('latest') model_C.save('latest') logger.info('End of Predictor and Corrector training.') tb_logger.close()