Ejemplo n.º 1
0
opt.is_regu_sigma = False

##############################################################################################################

if not opt.is_clip:
    opt.CR = 0

########################################  OFDM setting  ###########################################

size_after_compress = (opt.size //
                       (opt.n_downsample**2))**2 * (opt.C_channel // 2)

opt.N = opt.batchSize  # Batch size
opt.P = 1  # Number of symbols
opt.M = 64  # Number of subcarriers per symbol
opt.K = 16  # Length of CP
opt.L = 8  # Number of paths
opt.decay = 4
opt.S = size_after_compress // opt.M  # Number of packets

opt.is_cfo = False
opt.is_trick = True
opt.is_cfo_random = False
opt.max_ang = 1.7
opt.ang = 1.7

if opt.CE not in ['LS', 'MMSE', 'TRUE']:
    raise Exception("Channel estimation method not implemented")

if opt.EQ not in ['ZF', 'MMSE']:
    raise Exception("Equalization method not implemented")
Ejemplo n.º 2
0
    dataset_size = len(dataset)
    print('#training images = %d' % dataset_size)

elif opt.dataset_mode == 'CelebA':
    opt.dataroot = './data/celeba/CelebA_test'
    opt.load_size = 80
    opt.crop_size = 64
    opt.size = 64
    dataset = create_dataset(opt)  # create a dataset given opt.dataset_mode and other options
    dataset_size = len(dataset)
    print('#training images = %d' % dataset_size)
else:
    raise Exception('Not implemented yet')


opt.K = 256
# Display setting
opt.checkpoints_dir = './Checkpoints/'+ opt.dataset_mode + '_VQVAE'
opt.name = opt.gan_mode + '_K' + str(opt.K)


output_path = './Images/' +  opt.dataset_mode + '_VQVAE/' + opt.name


# Choose the neural network model
opt.model = 'VQVAE'


opt.num_test = 10000
opt.how_many_channel = 5
opt.N = opt.how_many_channel