Ejemplo n.º 1
0
def selfTrain(graphsage, labels, train, test, val, confList, adj_lists, filetime, features, temperature = 1, update_interval = 50, maxiter = 500, tol = 0.5, batch_size = 200  ):
    opt = TrainOptions().parse()
    #index = 0
    #index_array = np.arange(test.shape[0])

    closs = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(filter(lambda p : p.requires_grad, graphsage.parameters()), lr= opt.lr_slf,  momentum = opt.momentum_slf )
    loss_Data = []
    y_pred_last = 0
    encoder_scheduler = StepLR(optimizer,step_size=opt.step_size ,gamma= opt.gamma)
    acNodes = []
    nonActNod  = []
    for ite in range(int(maxiter)):
        if ite % update_interval == 0:

            labels_pse = np.empty((len(labels), 1), dtype=np.int64)
            labels_pse[train] = labels[train]
            test_scores = graphsage(test)

            test_scores = test_scores #/ temperature.unsqueeze(1).expand(test_scores.size(0), test_scores.size(1))
            test_output, _ = torch.max(F.softmax(test_scores,dim = 1), dim = 1)
            y_pred = F.softmax(test_scores, dim = 1).data.numpy().argmax(axis=1)

            #conf_test_nod, unconf_test_nod = vat_sel(graphsage, test, test_scores)
            conf_test_nod = list((test_output > opt.thres).nonzero().data.numpy().squeeze())
            unconf_test_nod = list((test_output <= opt.thres).nonzero().data.numpy().squeeze())
            #print(len(list((test_output <= 0.4).nonzero().data.numpy().squeeze())))
            labels_pse[ test[conf_test_nod]] = calPseLb(F.softmax(test_scores, dim = 1))[conf_test_nod]


            if ite % (update_interval*2) == 0:
                node, nonActN =  activeUnL(graphsage, list(val), Variable(torch.LongTensor(labels[np.array(list(val))])).squeeze().data.numpy(), features, adj_lists, opt.num_features, opt.num_hidden, opt.num_cls, filetime, labels)
                acNodes.extend(node)
                nonActNod.extend(nonActN)
                train_set = train +list(acNodes)
                labels_pse[ acNodes ] = labels[ acNodes ]
                #print(len(conf_test_nod), len(actNod))
                #writetofile(len(actNod), opt.res_path, filetime)
                #plotGraphStrc(train + acNodes + nonActNod,graphsage(train + acNodes + nonActNod).data, [0]*len(train)+[1]*len(acNodes)+[2]*len(nonActNod), adj_lists, time = filetime, name = 'act-slfT'+str(ite // update_interval))
            else:
                train_set = train + list(test[conf_test_nod])+list(acNodes)
                labels_pse[ acNodes ] = labels[ acNodes ]



            writetofile(len(conf_test_nod), opt.res_path, filetime)

            plotGraphStrc(train + list(test[conf_test_nod]) + list(test[unconf_test_nod]),graphsage(train + list(test[conf_test_nod]) + list(test[unconf_test_nod])).data, [0]*len(train)+[1]*len(conf_test_nod)+[2]*len(unconf_test_nod), adj_lists, time = filetime, name = 'slfT'+str(ite // update_interval))
            #plotGraphStrc(train + list(test) ,graphsage(train + list(test)).data, [0]*len(train)+ list(test_output) , adj_lists, time = filetime, name = 'slfT'+str(ite // update_interval))
            print('\nIter {}: '.format(ite), end='')
            writetofile('Iter:'+str(ite), opt.res_path, filetime)
            print("Validation ACCU:", accuracy_score( labels[test], y_pred))
            writetofile("Validation ACCU:" +  str(accuracy_score( labels[test], y_pred)), opt.res_path, filetime)
            print("confidence point ACCU:", accuracy_score( labels[test[conf_test_nod]], y_pred[conf_test_nod]))
            writetofile("confidence point ACCU:" +  str(accuracy_score( labels[test[conf_test_nod]], y_pred[conf_test_nod])), opt.res_path, filetime)
            # check stop criterion
            if ite >0:
                delta_label = np.sum(y_pred != y_pred_last).astype(np.float) / y_pred.shape[0]
                print('Fraction of documents with label changes: {} %'.format(np.round(delta_label*100, 3)))
                writetofile("Fraction of documents with label changes: " + str(np.round(delta_label*100, 3)), opt.res_path, filetime)
            y_pred_last = np.copy(y_pred)
            if ite > 0 and delta_label <= tol/100:
                print('\nFraction: {} % < tol: {} %'.format(np.round(delta_label*100, 3), tol))
                print('Reached tolerance threshold. Stopping training.')
                writetofile('Reached tolerance threshold. Stopping training.', opt.res_path, filetime)
                break

        scores = graphsage(train_set)
        #scores = scores #/ temperature
        #v_loss = vat_loss(graphsage, train_set,scores)
        loss = closs(scores, Variable(torch.LongTensor(labels_pse[np.array(train_set)])).squeeze()) #+  activeL(graphsage, train_set, Variable(torch.LongTensor(labels_pse[np.array(train_set)])).squeeze(), features, adj_lists, opt.num_features, opt.num_hidden, opt.num_cls)
        optimizer.zero_grad()
        loss.backward(retain_graph=True)
        optimizer.step()
        encoder_scheduler.step(ite)
        #index = index + 1 if (index + 1) * batch_size <= test.shape[0] else 0
        loss_Data.append(loss.data)
    return graphsage, loss_Data
Ejemplo n.º 2
0
            loss = criterion(pre, batch_x4)
            psnr = batch_PSNR(torch.clamp(pre, 0., 1.), batch_x4, 1.0)
            loss_list.append(loss.item())
            bar.set_description("Epoch: %d   Loss: %.6f" % (ep, loss_list[-1]))

            # Update the parameters
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            print("[Epoch %d][G loss: %7f][PSNR : %7f]" %
                  (ep, loss_list[-1], psnr))
        Loss_list.append(np.mean(loss_list))

        # Save the training image
        '''
         if ep % opts.record_epoch == 0:
            img = fusePostProcess(y_f, y_hat, patch1, patch2, single = False)
            cv2.imwrite(os.path.join(opts.det, 'image', str(ep) + ".png"), img[0, :, :, :])
        '''

        # Save the training model
        if (ep % 100 == 0):
            torch.save(model.state_dict(), './Model/%d.pkl' % (ep))


if __name__ == '__main__':
    opts = TrainOptions().parse()
    train(opts)

#def test(opts):
Ejemplo n.º 3
0
        #v_loss = vat_loss(graphsage, train_set,scores)
        loss = closs(scores, Variable(torch.LongTensor(labels_pse[np.array(train_set)])).squeeze()) #+  activeL(graphsage, train_set, Variable(torch.LongTensor(labels_pse[np.array(train_set)])).squeeze(), features, adj_lists, opt.num_features, opt.num_hidden, opt.num_cls)
        optimizer.zero_grad()
        loss.backward(retain_graph=True)
        optimizer.step()
        encoder_scheduler.step(ite)
        #index = index + 1 if (index + 1) * batch_size <= test.shape[0] else 0
        loss_Data.append(loss.data)
    return graphsage, loss_Data

if __name__ == "__main__":
    if torch.cuda.is_available():
        device = 'cuda'
    else:
        device = 'cpu'
    opt = TrainOptions().parse()
    if opt.dataset  == 'cora':
        opt.k = 80
        opt.lr_pre = 1e-4
        opt.epoch = 400
    elif opt.dataset  =='pubmed':
        opt.k = 50
        opt.lr_pre = 5e-4
    elif opt.dataset  == 'ppi':
        opt.lr_pre = 5e-4
        opt.k = 500
        opt.num_hidden = 150
        opt.epoch = 1000
    elif opt.dataset  == 'reddit':
        opt.lr_pre = 5e-4
        opt.k = 500