Ejemplo n.º 1
0
def test_run_trial_pruned(storage_mode: str,
                          caplog: LogCaptureFixture) -> None:
    def gen_func(
            intermediate: Optional[float] = None) -> Callable[[Trial], float]:
        def func(trial: Trial) -> float:
            if intermediate is not None:
                trial.report(step=1, value=intermediate)
            raise TrialPruned

        return func

    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage)

        caplog.clear()
        frozen_trial = _optimize._run_trial(study, gen_func(), catch=())
        assert frozen_trial.state == TrialState.PRUNED
        assert frozen_trial.value is None
        assert "Trial 0 pruned." in caplog.text

        caplog.clear()
        frozen_trial = _optimize._run_trial(study,
                                            gen_func(intermediate=1),
                                            catch=())
        assert frozen_trial.state == TrialState.PRUNED
        assert frozen_trial.value == 1
        assert "Trial 1 pruned." in caplog.text

        caplog.clear()
        frozen_trial = _optimize._run_trial(
            study, gen_func(intermediate=float("nan")), catch=())
        assert frozen_trial.state == TrialState.PRUNED
        assert frozen_trial.value is None
        assert "Trial 2 pruned." in caplog.text
Ejemplo n.º 2
0
def test_run_trial(storage_mode: str, caplog: LogCaptureFixture) -> None:

    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage)

        caplog.clear()
        frozen_trial = _optimize._run_trial(study, lambda _: 1.0, catch=())
        assert frozen_trial.state == TrialState.COMPLETE
        assert frozen_trial.value == 1.0
        assert "Trial 0 finished with value: 1.0 and parameters" in caplog.text

        caplog.clear()
        frozen_trial = _optimize._run_trial(study,
                                            lambda _: float("inf"),
                                            catch=())
        assert frozen_trial.state == TrialState.COMPLETE
        assert frozen_trial.value == float("inf")
        assert "Trial 1 finished with value: inf and parameters" in caplog.text

        caplog.clear()
        frozen_trial = _optimize._run_trial(study,
                                            lambda _: -float("inf"),
                                            catch=())
        assert frozen_trial.state == TrialState.COMPLETE
        assert frozen_trial.value == -float("inf")
        assert "Trial 2 finished with value: -inf and parameters" in caplog.text
Ejemplo n.º 3
0
def test_run_trial_exception(storage_mode: str) -> None:
    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage)
        with pytest.raises(ValueError):
            _optimize._run_trial(study, fail_objective, ())

    # Test trial with unacceptable exception.
    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage)
        with pytest.raises(ValueError):
            _optimize._run_trial(study, fail_objective, (ArithmeticError, ))
Ejemplo n.º 4
0
def test_run_trial_catch_exception(storage_mode: str) -> None:
    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage)
        frozen_trial = _optimize._run_trial(study,
                                            fail_objective,
                                            catch=(ValueError, ))
        assert frozen_trial.state == TrialState.FAIL
        assert STUDY_TELL_WARNING_KEY not in frozen_trial.system_attrs
Ejemplo n.º 5
0
def test_run_trial_invoke_tell_with_suppressing_warning(
        storage_mode: str) -> None:
    def func_numerical(trial: Trial) -> float:
        return trial.suggest_float("v", 0, 10)

    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage)

        with mock.patch("optuna.study._optimize._tell_with_warning",
                        side_effect=_tell_with_warning) as mock_obj:
            _optimize._run_trial(study, func_numerical, ())
            mock_obj.assert_called_once_with(
                study=mock.ANY,
                trial=mock.ANY,
                values=mock.ANY,
                state=mock.ANY,
                suppress_warning=True,
            )
Ejemplo n.º 6
0
def test_run_trial(storage_mode: str) -> None:

    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage)

        # Test trial with acceptable exception.
        def func_value_error(_: Trial) -> float:

            raise ValueError

        trial = _optimize._run_trial(study,
                                     func_value_error,
                                     catch=(ValueError, ))
        frozen_trial = study._storage.get_trial(trial._trial_id)

        assert frozen_trial.state == TrialState.FAIL

        # Test trial with unacceptable exception.
        with pytest.raises(ValueError):
            _optimize._run_trial(study,
                                 func_value_error,
                                 catch=(ArithmeticError, ))

        # Test trial with invalid objective value: None
        def func_none(_: Trial) -> float:

            return None  # type: ignore

        trial = _optimize._run_trial(study, func_none, catch=(Exception, ))
        frozen_trial = study._storage.get_trial(trial._trial_id)

        assert frozen_trial.state == TrialState.FAIL

        # Test trial with invalid objective value: nan
        def func_nan(_: Trial) -> float:

            return float("nan")

        trial = _optimize._run_trial(study, func_nan, catch=(Exception, ))
        frozen_trial = study._storage.get_trial(trial._trial_id)

        assert frozen_trial.state == TrialState.FAIL
Ejemplo n.º 7
0
def test_run_trial_automatically_fail(storage_mode: str,
                                      caplog: LogCaptureFixture) -> None:

    with StorageSupplier(storage_mode) as storage:
        study = create_study(storage=storage)

        caplog.clear()
        frozen_trial = _optimize._run_trial(study,
                                            lambda _: float("nan"),
                                            catch=())
        assert frozen_trial.state == TrialState.FAIL
        assert frozen_trial.value is None
        assert "Trial 0 failed because of the following error:" in caplog.text
        assert "The value nan is not acceptable." in caplog.text

        caplog.clear()
        frozen_trial = _optimize._run_trial(
            study, lambda _: None,
            catch=())  # type: ignore[arg-type,return-value] # noqa: E501
        assert frozen_trial.state == TrialState.FAIL
        assert frozen_trial.value is None
        assert "Trial 1 failed because of the following error:" in caplog.text
        assert "The value None could not be cast to float." in caplog.text

        caplog.clear()
        frozen_trial = _optimize._run_trial(
            study, lambda _: object(),
            catch=())  # type: ignore[arg-type,return-value] # noqa: E501
        assert frozen_trial.state == TrialState.FAIL
        assert frozen_trial.value is None
        assert "Trial 2 failed because of the following error:" in caplog.text
        assert "The value <object object at" in caplog.text
        assert "> could not be cast to float." in caplog.text

        caplog.clear()
        frozen_trial = _optimize._run_trial(study, lambda _: [0, 1], catch=())
        assert frozen_trial.state == TrialState.FAIL
        assert frozen_trial.value is None
        assert "Trial 3 failed because of the following error: The number" in caplog.text
        assert "of the values 2 did not match the number of the objectives 1." in caplog.text
Ejemplo n.º 8
0
def test_run_trial_with_trial_pruned(trial_pruned_class: Callable[[],
                                                                  TrialPruned],
                                     report_value: Optional[float]) -> None:

    study = create_study()

    def func_with_trial_pruned(trial: Trial) -> float:

        if report_value is not None:
            trial.report(report_value, 1)

        raise trial_pruned_class()

    trial = _optimize._run_trial(study, func_with_trial_pruned, catch=())
    frozen_trial = study._storage.get_trial(trial._trial_id)
    assert frozen_trial.value == report_value
    assert frozen_trial.state == TrialState.PRUNED