Ejemplo n.º 1
0
    def predict(self, predicted_choice_id_name, agents_index=None):
        """ Run prediction. Currently makes sense only for choice models."""
        # Create temporary configuration where all words 'estimate' are replaced by 'run'
        tmp_config = Resources(self.config)
        
        if self.agents_index_for_prediction is None:
            self.agents_index_for_prediction = self.get_agent_set_index().copy()
            
        if agents_index is None:
            agents_index = self.agents_index_for_prediction
        
        tmp_config['models_configuration'][self.model_name]['controller']['run']['arguments']['coefficients'] = "coeff_est"
        tmp_config['models_configuration'][self.model_name]['controller']['run']['arguments']['agents_index'] = "agents_index"
        tmp_config['models_configuration'][self.model_name]['controller']['run']['arguments']['chunk_specification'] = "{'nchunks':1}"

        ### save specification and coefficients to cache (no matter the save_estimation_results flag)
        ### so that the prepare_for_run method could load specification and coefficients from there
        #output_configuration = self.config['output_configuration']
        #del self.config['output_configuration']
        #self.save_results()
        
        #self.config['output_configuration'] = output_configuration
        
        #self.model_system.run_year_namespace["coefficients"] = self.coefficients
        #del tmp_config['models_configuration'][self.model_name]['controller']['prepare_for_run']
        
        try:
            run_year_namespace = copy.copy(self.model_system.run_year_namespace)
        except:
            logger.log_error("The estimate() method must be run first")
            return False
        
        try:
            agents = self.get_agent_set()
            choice_id_name = self.get_choice_set().get_id_name()[0]
            # save current locations of agents
            current_choices = agents.get_attribute(choice_id_name).copy()
            dummy_data = zeros(current_choices.size, dtype=current_choices.dtype)-1
            #agents.modify_attribute(name=choice_id_name, data=dummy_data)  #reset choices for all agents
            agents.modify_attribute(name=choice_id_name, data=dummy_data, index=agents_index)  #reset choices for agents in agents_index
            
            run_year_namespace["process"] = "run"
            run_year_namespace["coeff_est"] = self.coefficients
            run_year_namespace["agents_index"] = agents_index
            run_year_namespace["processmodel_config"] = tmp_config['models_configuration'][self.model_name]['controller']['run']
            new_choices = self.model_system.do_process(run_year_namespace)
            
            #self.model_system.run(tmp_config, write_datasets_to_cache_at_end_of_year=False)
            #new_choices = agents.get_attribute(choice_id_name).copy()
            agents.modify_attribute(name=choice_id_name, data=current_choices)
            dummy_data[agents_index] = new_choices
            if predicted_choice_id_name not in agents.get_known_attribute_names():
                agents.add_primary_attribute(name=predicted_choice_id_name, data=dummy_data)
            else:
                agents.modify_attribute(name=predicted_choice_id_name, data=dummy_data)
            logger.log_status("Predictions saved into attribute " + predicted_choice_id_name)
            return True
        except Exception, e:
            logger.log_error("Error encountered in prediction: %s" % e)
            logger.log_stack_trace()
Ejemplo n.º 2
0
    def predict(self, predicted_choice_id_name, agents_index=None):
        """ Run prediction. Currently makes sense only for choice models."""
        # Create temporary configuration where all words 'estimate' are replaced by 'run'
        tmp_config = Resources(self.config)
        
        if self.agents_index_for_prediction is None:
            self.agents_index_for_prediction = self.get_agent_set_index().copy()
            
        if agents_index is None:
            agents_index = self.agents_index_for_prediction
        
        tmp_config['models_configuration'][self.model_name]['controller']['run']['arguments']['coefficients'] = "coeff_est"
        tmp_config['models_configuration'][self.model_name]['controller']['run']['arguments']['agents_index'] = "agents_index"
        tmp_config['models_configuration'][self.model_name]['controller']['run']['arguments']['chunk_specification'] = "{'nchunks':1}"

        ### save specification and coefficients to cache (no matter the save_estimation_results flag)
        ### so that the prepare_for_run method could load specification and coefficients from there
        #output_configuration = self.config['output_configuration']
        #del self.config['output_configuration']
        #self.save_results()
        
        #self.config['output_configuration'] = output_configuration
        
        #self.model_system.run_year_namespace["coefficients"] = self.coefficients
        #del tmp_config['models_configuration'][self.model_name]['controller']['prepare_for_run']
        
        try:
            run_year_namespace = copy.copy(self.model_system.run_year_namespace)
        except:
            logger.log_error("The estimate() method must be run first")
            return False
        
        try:
            agents = self.get_agent_set()
            choice_id_name = self.get_choice_set().get_id_name()[0]
            # save current locations of agents
            current_choices = agents.get_attribute(choice_id_name).copy()
            dummy_data = zeros(current_choices.size, dtype=current_choices.dtype)-1
            #agents.modify_attribute(name=choice_id_name, data=dummy_data)  #reset choices for all agents
            agents.modify_attribute(name=choice_id_name, data=dummy_data, index=agents_index)  #reset choices for agents in agents_index
            
            run_year_namespace["process"] = "run"
            run_year_namespace["coeff_est"] = self.coefficients
            run_year_namespace["agents_index"] = agents_index
            run_year_namespace["processmodel_config"] = tmp_config['models_configuration'][self.model_name]['controller']['run']
            new_choices = self.model_system.do_process(run_year_namespace)
            
            #self.model_system.run(tmp_config, write_datasets_to_cache_at_end_of_year=False)
            #new_choices = agents.get_attribute(choice_id_name).copy()
            agents.modify_attribute(name=choice_id_name, data=current_choices)
            dummy_data[agents_index] = new_choices
            if predicted_choice_id_name not in agents.get_known_attribute_names():
                agents.add_primary_attribute(name=predicted_choice_id_name, data=dummy_data)
            else:
                agents.modify_attribute(name=predicted_choice_id_name, data=dummy_data)
            logger.log_status("Predictions saved into attribute " + predicted_choice_id_name)
            return True
        except Exception, e:
            logger.log_error("Error encountered in prediction: %s" % e)
            logger.log_stack_trace()
Ejemplo n.º 3
0
    def test_run_estimation(self):
        cache_dir = mkdtemp(prefix="test_washtenaw_run_estimation_tmp")
        try:
            # Cache to a temporary folder.
            ev = '%s "%s" --cache-directory="%s" washtenaw.tests.test_run_estimation_config' % (
                sys.executable,
                create_baseyear_cache_script_path,
                cache_dir,
            )
            logger.log_status("Invoking '%s'" % ev)
            return_code = os.system(ev)

            if return_code > 0:
                raise EnvironmentError(
                    "Failed while creating the baseyear cache " "needed to run Washtenaw estimation tests."
                )

            estimation_config = {
                "cache_directory": cache_dir,
                "dataset_pool_configuration": DatasetPoolConfiguration(
                    package_order=["washtenaw", "urbansim", "opus_core"]
                ),
                "datasets_to_cache_after_each_model": [],
                "low_memory_mode": False,
                "base_year": 2000,
                "years": (2000, 2000),
            }

            failed = []
            succeeded = []

            for model_name in [
                "lpm",
                "hlcm",
                "elcm-industrial",
                "elcm-commercial",
                #                    'elcm-home_based', # fails
                "dplcm-industrial",
                "dplcm-commercial",
                "dplcm-residential",
                "rlsm",
            ]:

                try:
                    self.estimation_runner.run_estimation(estimation_config, model_name, save_estimation_results=False)
                    succeeded.append(model_name)
                except:
                    logger.log_stack_trace()
                    failed.append(model_name)

            if len(succeeded) > 0:
                print "Succeeded in estimating the following models: %s." % ", ".join(succeeded)

            if len(failed) > 0:
                self.fail("Failed to estimate the following models: %s." % ", ".join(failed))

        finally:
            if os.path.exists(cache_dir):
                rmtree(cache_dir)
Ejemplo n.º 4
0
def get_specification_attributes_from_dictionary(specification_dict):
    """ Creates a specification object from a dictionary specification_dict. Keys of the dictionary are submodels. If there
    is only one submodel, use -2 as key. A value of specification_dict for each submodel entry is either a list 
    or a dictionary containing specification for the particular submodel.
    
    If it is a list, each element can be defined in one of the following forms:
        - a character string specifying a variable in its fully qualified name or as an expression - in such a case 
                                the coefficient name will be the alias of the variable
        - a tuple of length 2: variable name as above, and the corresponding coefficient name
        - a tuple of length 3: variable name, coefficient name, fixed value of the coefficient (if the 
                                coefficient should not be estimated)
        - a dictionary with pairs variable name, coefficient name
        
    If it is a dictionary, it can contain specification for each equation or for elements of other fields.
    It can contain an entry 'name' which specifies the name of the field (by default the name is 'equation').
    If it is another name, the values are stored in the dictionary attribute 'other_fields'. Each element of the 
    submodel dictionary can be again a list (see the previous paragraph), or a dictionary 
    (like the one described in this paragraph).
    
    specification_dict can contain an entry '_definition_' which should be a list of elements in one of the forms
    described in the second paragraph.
    In such a case, the entries defined for submodels can contain only the variable aliases. The corresponding 
    coefficient names and fixed values (if defined) are taken from the definition section. 
    
    See examples in unit tests below.
    """
    variables = []
    coefficients = []
    equations = []
    submodels = []
    fixed_values = []
    definition = {}
    other_fields = {}
    try:
        if "_definition_" in specification_dict.keys():
            definition["variables"], definition["coefficients"], definition["equations"], dummy1, definition["fixed_values"], dummy2 = \
                            get_variables_coefficients_equations_for_submodel(specification_dict["_definition_"], "_definition_")
            definition["alias"] = map(lambda x: VariableName(x).get_alias(),
                                      definition["variables"])
            del specification_dict["_definition_"]
        for sub_model, submodel_spec in specification_dict.items():
            variable, coefficient, equation, submodel, fixed_value, other_field = get_variables_coefficients_equations_for_submodel(
                submodel_spec, sub_model, definition)
            variables += variable
            coefficients += coefficient
            equations += equation
            submodels += submodel
            fixed_values += fixed_value
            for key, value in other_field.iteritems():
                if key in other_fields:
                    other_fields[key] = concatenate((other_fields[key], value))
                else:
                    other_fields[key] = array(value)

    except Exception, e:
        logger.log_stack_trace()
        raise ValueError, "Wrong specification format for model specification: %s" % e
def get_specification_attributes_from_dictionary(specification_dict):
    """ Creates a specification object from a dictionary specification_dict. Keys of the dictionary are submodels. If there
    is only one submodel, use -2 as key. A value of specification_dict for each submodel entry is either a list 
    or a dictionary containing specification for the particular submodel.
    
    If it is a list, each element can be defined in one of the following forms:
        - a character string specifying a variable in its fully qualified name or as an expression - in such a case 
                                the coefficient name will be the alias of the variable
        - a tuple of length 2: variable name as above, and the corresponding coefficient name
        - a tuple of length 3: variable name, coefficient name, fixed value of the coefficient (if the 
                                coefficient should not be estimated)
        - a dictionary with pairs variable name, coefficient name
        
    If it is a dictionary, it can contain specification for each equation or for elements of other fields.
    It can contain an entry 'name' which specifies the name of the field (by default the name is 'equation').
    If it is another name, the values are stored in the dictionary attribute 'other_fields'. Each element of the 
    submodel dictionary can be again a list (see the previous paragraph), or a dictionary 
    (like the one described in this paragraph).
    
    specification_dict can contain an entry '_definition_' which should be a list of elements in one of the forms
    described in the second paragraph.
    In such a case, the entries defined for submodels can contain only the variable aliases. The corresponding 
    coefficient names and fixed values (if defined) are taken from the definition section. 
    
    See examples in unit tests below.
    """
    variables = []
    coefficients = []
    equations = []
    submodels = []
    fixed_values = []
    definition = {}
    other_fields = {}
    try:
        if "_definition_" in specification_dict.keys():
            definition["variables"], definition["coefficients"], definition["equations"], dummy1, definition["fixed_values"], dummy2 = \
                            get_variables_coefficients_equations_for_submodel(specification_dict["_definition_"], "_definition_")
            definition["alias"]  = map(lambda x: VariableName(x).get_alias(), definition["variables"])
            del specification_dict["_definition_"]
        for sub_model, submodel_spec in specification_dict.items():
            variable, coefficient, equation, submodel, fixed_value, other_field = get_variables_coefficients_equations_for_submodel(
                                                                         submodel_spec, sub_model, definition)
            variables += variable
            coefficients += coefficient
            equations += equation
            submodels += submodel
            fixed_values += fixed_value
            for key, value in other_field.iteritems():
                if key in other_fields:
                    other_fields[key] = concatenate((other_fields[key], value))
                else:
                    other_fields[key] = array(value)

    except Exception, e:
        logger.log_stack_trace()
        raise ValueError, "Wrong specification format for model specification: %s" % e
    def test_run_estimation(self):
        cache_dir = mkdtemp(prefix='test_washtenaw_run_estimation_tmp')
        try:
            # Cache to a temporary folder.
            ev = ('%s "%s" --cache-directory="%s" washtenaw.tests.test_run_estimation_config'
                % (sys.executable, create_baseyear_cache_script_path, cache_dir))
            logger.log_status("Invoking '%s'" % ev)
            return_code = os.system(ev)
            
            if return_code > 0:
                raise EnvironmentError('Failed while creating the baseyear cache '
                    'needed to run Washtenaw estimation tests.')
            
            estimation_config = {
                'cache_directory' : cache_dir,
                'dataset_pool_configuration': DatasetPoolConfiguration(
                    package_order=['washtenaw', 'urbansim', 'opus_core'],
                    ),
                'datasets_to_cache_after_each_model':[],
                'low_memory_mode':False,
                'base_year': 2000,
                'years': (2000,2000),                    
                }
        
            failed = []
            succeeded = []
            
            for model_name in [
                    'lpm',
                    'hlcm', 
                    'elcm-industrial',
                    'elcm-commercial',
#                    'elcm-home_based', # fails
                    'dplcm-industrial',
                    'dplcm-commercial',
                    'dplcm-residential',
                    'rlsm',
                    ]:
                    
                try:
                    self.estimation_runner.run_estimation(estimation_config, model_name, save_estimation_results=False)
                    succeeded.append(model_name)
                except:
                    logger.log_stack_trace()
                    failed.append(model_name)

            if len(succeeded) > 0:
                print 'Succeeded in estimating the following models: %s.' % ', '.join(succeeded)
                
            if len(failed) > 0:
                self.fail('Failed to estimate the following models: %s.' % ', '.join(failed))
            
        finally:
            if os.path.exists(cache_dir):
                rmtree(cache_dir)
Ejemplo n.º 7
0
 def _print_table(self, table_name):
     """Provide debugging info to figure out why the above test is failing, sometimes."""
     try:
         results = self.db.GetResultsFromQuery('select * from %s' % table_name)
         logger.start_block('Contents of table %s' % table_name)
         try:
             for row in results:
                 logger.log_status(row)
         finally:
             logger.end_block()
     except:
         logger.log_status('Error accessing table %s' % table_name)
         logger.log_stack_trace()
Ejemplo n.º 8
0
 def _print_table(self, table_name):
     """Provide debugging info to figure out why the above test is failing, sometimes."""
     try:
         results = self.db.GetResultsFromQuery('select * from %s' %
                                               table_name)
         logger.start_block('Contents of table %s' % table_name)
         try:
             for row in results:
                 logger.log_status(row)
         finally:
             logger.end_block()
     except:
         logger.log_status('Error accessing table %s' % table_name)
         logger.log_stack_trace()
Ejemplo n.º 9
0
class VariableFactory(object):
    """Class for creating an instance of class Variable from a string that specifies the variable name.
    It should be used by calling the method 'get_variable'.  Each variable should be implemented as one of:
      - a class with a name of the variable, which should be placed in a module of the same name as the class
      - an expression
      - an alias that has a corresponding expression in the aliases.py file in the variables directory for that dataset
    Beware: the methods of this class are class methods, not object methods.
    """

    # Class dictionary holding the expression library.  The keys in the dictionary are pairs
    # (dataset_name, variable_name) and the values are the corresponding expressions.
    # This starts out as an empty dictionary, and can be set using the set_expression_library method.
    _expression_library = {}

    def set_expression_library(self, lib):
        VariableFactory._expression_library = lib

    def get_variable(self,
                     variable_name,
                     dataset,
                     quiet=False,
                     debug=0,
                     index_name=None):
        """Returns an instance of class Variable. 
        'variable_name' is an instance of class VariableName. 
        'dataset' is an object of class Dataset to which the variable belongs to. 
        In case of an error in either importing the module or evaluating its constructor, 
        the method returns None.
        If quiet is True no warnings are printed.
        index_name is used for lag variables only.
        """
        lag_attribute_name = None
        lag_offset = 0

        if not isinstance(debug, DebugPrinter):
            debug = DebugPrinter(debug)

        if variable_name.get_autogen_class() is not None:
            # variable_name has an autogenerated class -- just use that
            variable_subclass = variable_name.get_autogen_class()
            substrings = ()
        else:
            # either find the variable name in the expression library (if present), in an appropriate 'aliases' file,
            # or load our variable class as 'variable_subclass' using an import statement
            short_name = variable_name.get_short_name()
            dataset_name = variable_name.get_dataset_name()
            package_name = variable_name.get_package_name()
            # if there isn't a package name, first look in the expression library (if there is a package name, look elsewhere)
            if package_name is None:
                e = VariableFactory._expression_library.get(
                    (dataset_name, short_name), None)
                if e is not None:
                    if e == variable_name.get_expression(
                    ):  # it is a primary attribute
                        return None
                    v = VariableName(e)
                    return VariableFactory().get_variable(v,
                                                          dataset,
                                                          quiet=quiet,
                                                          debug=debug)
            else:
                # not in the expression library - next look in the appropriate 'aliases' file, if one is present
                # (but only if we have a package name in the first place)
                try:
                    stmt = 'from %s.%s.aliases import aliases' % (package_name,
                                                                  dataset_name)
                    exec(stmt)
                except ImportError:
                    aliases = []
                for a in aliases:
                    # for each definition, see if the alias is equal to the short_name.  If it is,
                    # then use that definition for the variable
                    v = VariableName(a)
                    if v.get_alias() == short_name:
                        return VariableFactory().get_variable(v,
                                                              dataset,
                                                              quiet=quiet,
                                                              debug=debug)

            lag_variable_parser = LagVariableParser()
            if lag_variable_parser.is_short_name_for_lag_variable(short_name):
                lag_attribute_name, lag_offset = lag_variable_parser.parse_lag_variable_short_name(
                    short_name)
                true_short_name = "VVV_lagLLL"
                substrings = (package_name, lag_attribute_name, lag_offset,
                              dataset_name, index_name)
                opus_path = 'opus_core.variables'

            else:
                if package_name is None:
                    raise LookupError(
                        "Incomplete variable specification for '%s.%s' (missing package name, "
                        "and variable is not in expression library not a lag variable)."
                        % (dataset_name, short_name))

                opus_path = '%s.%s' % (package_name, dataset_name)

                true_short_name, substrings = VariableFamilyNameTranslator().\
                        get_translated_variable_name_and_substring_arguments(opus_path, short_name)

            module = '%s.%s' % (opus_path, true_short_name)

            # Note that simply checking for the .py module file would not
            # be safe here, as objects could be instantiated in __init__.py files.
            try:
                ev = "from %s import %s as variable_subclass" % (
                    module, true_short_name)
                debug.print_debug("Evaluating '" + ev + "'.", 12)
                exec(ev)
                debug.print_debug("Successful.", 12)
            except ImportError, e:
                if not quiet:
                    from opus_core.simulation_state import SimulationState
                    time = SimulationState().get_current_time()
                    desc = '\n'.join((
                        "Opus variable '%s' does not exist for dataset '%s' in year %s. "
                        "The following error occured when finally trying to import "
                        "the variable '%s' from the Python module "
                        "'%s':",
                        "%s",
                    )) % (true_short_name, opus_path, time, true_short_name,
                          module,
                          indent_text(
                              formatPlainTextExceptionInfoWithoutLog('')))
                    raise NameError(desc)
                return None

        try:
            var_class = variable_subclass(*substrings)
        except:
            logger.log_error("Could not initialize class of variable %s." %
                             variable_name.get_expression())
            logger.log_stack_trace()
            raise
        var_class.set_dataset(dataset)
        return var_class
Ejemplo n.º 10
0
    def test_run_estimation(self):
        cache_dir = mkdtemp(prefix='test_washtenaw_run_estimation_tmp')
        try:
            # Cache to a temporary folder.
            ev = (
                '%s "%s" --cache-directory="%s" washtenaw.tests.test_run_estimation_config'
                %
                (sys.executable, create_baseyear_cache_script_path, cache_dir))
            logger.log_status("Invoking '%s'" % ev)
            return_code = os.system(ev)

            if return_code > 0:
                raise EnvironmentError(
                    'Failed while creating the baseyear cache '
                    'needed to run Washtenaw estimation tests.')

            estimation_config = {
                'cache_directory':
                cache_dir,
                'dataset_pool_configuration':
                DatasetPoolConfiguration(
                    package_order=['washtenaw', 'urbansim', 'opus_core'], ),
                'datasets_to_cache_after_each_model': [],
                'low_memory_mode':
                False,
                'base_year':
                2000,
                'years': (2000, 2000),
            }

            failed = []
            succeeded = []

            for model_name in [
                    'lpm',
                    'hlcm',
                    'elcm-industrial',
                    'elcm-commercial',
                    #                    'elcm-home_based', # fails
                    'dplcm-industrial',
                    'dplcm-commercial',
                    'dplcm-residential',
                    'rlsm',
            ]:

                try:
                    self.estimation_runner.run_estimation(
                        estimation_config,
                        model_name,
                        save_estimation_results=False)
                    succeeded.append(model_name)
                except:
                    logger.log_stack_trace()
                    failed.append(model_name)

            if len(succeeded) > 0:
                print 'Succeeded in estimating the following models: %s.' % ', '.join(
                    succeeded)

            if len(failed) > 0:
                self.fail('Failed to estimate the following models: %s.' %
                          ', '.join(failed))

        finally:
            if os.path.exists(cache_dir):
                rmtree(cache_dir)
Ejemplo n.º 11
0
 def get_variable(self, variable_name, dataset, quiet=False, debug=0, index_name=None):
     """Returns an instance of class Variable. 
     'variable_name' is an instance of class VariableName. 
     'dataset' is an object of class Dataset to which the variable belongs to. 
     In case of an error in either importing the module or evaluating its constructor, 
     the method returns None.
     If quiet is True no warnings are printed.
     index_name is used for lag variables only.
     """
     lag_attribute_name = None
     lag_offset = 0
         
     if not isinstance(debug, DebugPrinter):
         debug = DebugPrinter(debug)
         
     if variable_name.get_autogen_class() is not None:
         # variable_name has an autogenerated class -- just use that
         variable_subclass = variable_name.get_autogen_class()
         substrings = ()
     else:
         # either find the variable name in the expression library (if present), in an appropriate 'aliases' file, 
         # or load our variable class as 'variable_subclass' using an import statement
         short_name = variable_name.get_short_name()
         dataset_name = variable_name.get_dataset_name()
         package_name = variable_name.get_package_name()
         # if there isn't a package name, first look in the expression library (if there is a package name, look elsewhere)
         if package_name is None:
             e = VariableFactory._expression_library.get( (dataset_name,short_name), None)
             if e is not None:
                 if e == variable_name.get_expression(): # it is a primary attribute
                     return None
                 v = VariableName(e)
                 return VariableFactory().get_variable(v, dataset, quiet=quiet, debug=debug)
         else:
             # not in the expression library - next look in the appropriate 'aliases' file, if one is present
             # (but only if we have a package name in the first place)
             try:
                 stmt = 'from %s.%s.aliases import aliases' % (package_name, dataset_name)
                 exec(stmt)
             except ImportError:
                 aliases = []
             for a in aliases:
                 # for each definition, see if the alias is equal to the short_name.  If it is,
                 # then use that definition for the variable
                 v = VariableName(a)
                 if v.get_alias() == short_name:
                     return VariableFactory().get_variable(v, dataset, quiet=quiet, debug=debug)
         
         lag_variable_parser = LagVariableParser()
         if lag_variable_parser.is_short_name_for_lag_variable(short_name):
             lag_attribute_name, lag_offset = lag_variable_parser.parse_lag_variable_short_name(short_name)
             true_short_name = "VVV_lagLLL"
             substrings = (package_name, lag_attribute_name, lag_offset, dataset_name, index_name)
             directory_path = 'opus_core.variables'
             
         else:      
             if package_name is None:
                 raise LookupError("Incomplete variable specification for '%s.%s' (missing package name, "
                                   "and variable is not in expression library not a lag variable)." 
                                   % (dataset_name, short_name))
             
             directory_path = '%s.%s' % (package_name,dataset_name)
                 
             true_short_name, substrings = VariableFamilyNameTranslator().\
                     get_translated_variable_name_and_substring_arguments(directory_path, short_name)
             
         module = '%s.%s' % (directory_path, true_short_name)
         try:
             ev = "from %s import %s as variable_subclass" % (module, true_short_name)
             debug.print_debug("Evaluating '" + ev + "'.",12)
             exec(ev)
             debug.print_debug("Successful.", 12)
         except ImportError:
             if not quiet:
                 from opus_core.simulation_state import SimulationState
                 time = SimulationState().get_current_time()
                 raise NameError("Opus variable '%s' does not exist for dataset '%s' in year %s" % 
                                 (true_short_name, directory_path, time))
             return None
     
     try:
         var_class = variable_subclass(*substrings)
     except:
         logger.log_error("Could not initialize class of variable %s." % variable_name.get_expression())
         logger.log_stack_trace()
         raise
     var_class.set_dataset(dataset)
     return var_class