Ejemplo n.º 1
0
    def _get_load_task(self):
        self.fold_task.x_1
        cp = self.factory_task

        n_l_h = cp.N_h[0, (0, -1)].flatten()
        n_r_h = cp.N_h[-1, (0, -1)].flatten()

        dof_constraints = fix(n_l_h, [0, 1, 2]) + fix(n_r_h, [0, 1, 2])

        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(goal_function_type='total potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints},
                                      use_f_du=True,
                                      acc=1e-4, MAX_ITER=1000,
                                      debug_level=0)
        F_ext_list = [(n, 2, 100.0) for n in cp.N_h[1, :]]
        fu_tot_poteng = FuPotEngTotal(kappa=np.array([10]),
                                      F_ext_list=F_ext_list)
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.fold_task,
                            config=sim_config, n_steps=1)
        cp = st.formed_object
        cp.x_0 = self.fold_task.x_1
        cp.u[:, :] = 0.0
        fu_tot_poteng.forming_task = st
        return st
Ejemplo n.º 2
0
    def _get_load_task(self):
        self.fold_task.x_1
        cp = self.factory_task

        n_l_h = cp.N_h[0, (0, -1)].flatten()
        n_r_h = cp.N_h[-1, (0, -1)].flatten()

        dof_constraints = fix(n_l_h, [0, 1, 2]) + fix(n_r_h, [0, 1, 2])

        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(
            goal_function_type='total potential energy',
            gu={
                'cl': gu_constant_length,
                'dofs': gu_dof_constraints
            },
            use_f_du=True,
            acc=1e-4,
            MAX_ITER=1000,
            debug_level=0)
        F_ext_list = [(n, 2, 100.0) for n in cp.N_h[1, :]]
        fu_tot_poteng = FuPotEngTotal(kappa=np.array([10]),
                                      F_ext_list=F_ext_list)
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.fold_task,
                            config=sim_config,
                            n_steps=1)
        cp = st.formed_object
        cp.x_0 = self.fold_task.x_1
        cp.u[:, :] = 0.0
        fu_tot_poteng.forming_task = st
        return st
Ejemplo n.º 3
0
    def _get_turn_task2(self):

        self.fold_task.x_1

        u_z = 0.1
        fixed_nodes_xzy = fix([7, 19], (0, 1, 2))
        lift_nodes_z = fix([3, 15], (2), lambda t: t * u_z)

        dof_constraints = fixed_nodes_xzy + lift_nodes_z
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(goal_function_type='total potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints},
                                      acc=1e-5, MAX_ITER=1000,
                                      debug_level=0)
        load_nodes = []
        FN = lambda F: lambda t: t * F
        F_ext_list = [(n, 2, FN(-10)) for n in load_nodes]
        fu_tot_poteng = FuPotEngTotal(kappa=np.array([1000]),
                                      F_ext_list=F_ext_list)
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.fold_task,
                            config=sim_config, n_steps=1)
        fu_tot_poteng.forming_task = st
        cp = st.formed_object
        cp.u[(3, 15), 2] = u_z
        return st
Ejemplo n.º 4
0
    def _get_load_task(self):
        self.turn_task.x_1

        fixed_nodes_yz = fix([0, 2, 20,  22], (1, 2))  # + \
        fixed_nodes_x = fix([0, 2, 20, 22], (0))  # + \
        #    fix([1, 21], [0, 2])

        link_bnd = link([48, 49, 50, 56, 57, 58, 64, 65, 66, 72, 73, 74],
                        [0, 1, 2], 1.0,
                        [51, 52, 53, 59, 60, 61, 67, 68, 69, 75, 76, 77],
                        [0, 1, 2], -1.0)

        dof_constraints = fixed_nodes_x + fixed_nodes_yz + link_bnd
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(goal_function_type='total potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints},
                                      acc=1e-5, MAX_ITER=1000,
                                      debug_level=0)
        load_nodes = [10, 11, 12]
        FN = lambda F: lambda t: t * F
        F_ext_list = [(n, 2, FN(-10)) for n in load_nodes]
        fu_tot_poteng = FuPotEngTotal(kappa=np.array([10]),
                                      F_ext_list=F_ext_list)  # (2 * n, 2, -1)])
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.turn_task,
                            config=sim_config, n_steps=1)
        fu_tot_poteng.forming_task = st
        cp = st.formed_object
        cp.x_0 = self.turn_task.x_1
        cp.u[:, :] = 0.0
        return st
Ejemplo n.º 5
0
    def _get_load_task(self):
        self.fold_task.x_1

        dof_constraints = fix(
            [0, 2, 6], [2]) + fix([0, 2], [1]) + fix([6], [0])

        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(goal_function_type='total potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints},
                                      use_f_du=True,
                                      acc=1e-8, MAX_ITER=1000,
                                      debug_level=0)

        FN = lambda F: lambda t: t * F

        F_ext_list = [(n, 2, FN(-1)) for n in [1, 3]]

        print 'F_ext_list', F_ext_list
        fu_tot_poteng = FuPotEngTotal(kappa=10, fu_factor=1,
                                      F_ext_list=F_ext_list)
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.fold_task,
                            config=sim_config, n_steps=1)
        cp = st.formed_object
        cp.x_0 = self.fold_task.x_1
        cp.u[:, :] = 0.0
        #cp.u[(4, 5), 2] = -0.001
        #cp.u[(1, 3), 2] = -0.001
        fu_tot_poteng.forming_task = st
        return st
Ejemplo n.º 6
0
    def _get_load_task(self):
        self.fold_task.x_1
        cp = self.factory_task

        n_l_h = cp.N_h[0, (0, -1)].flatten()
        n_r_h = cp.N_h[-1, (0, -1)].flatten()

        dof_constraints = fix(
            [0, 2, 4], [0, 1, 2]) + fix([20, 22, 24], [0, 1, 2])

        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(goal_function_type='total potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints},
                                      acc=1e-6, MAX_ITER=1000,
                                      debug_level=0)
        FN = lambda F: lambda t: t * F
        F_max = 20

        F_ext_list = [(cp.N_h[2, :], 2, FN(F_max))]
        fu_tot_poteng = FuPotEngTotal(kappa=np.array([10]),
                                      F_ext_list=F_ext_list)
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.fold_task,
                            config=sim_config, n_steps=10)
        cp = st.formed_object
        cp.x_0 = self.fold_task.x_1
        cp.u[:, :] = 0.0
        cp.u[[10, 11, 12, 13, 14], 2] = 0.001
        fu_tot_poteng.forming_task = st
        return st
Ejemplo n.º 7
0
    def _get_load_task(self):
        self.fold_task.x_1

        dof_constraints = fix(
            [0, 2, 6], [2]) + fix([0, 2], [1]) + fix([6], [0])

        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(goal_function_type='total potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints},
                                      use_f_du=True,
                                      acc=1e-8, MAX_ITER=1000,
                                      debug_level=0)

        FN = lambda F: lambda t: t * F

        F_ext_list = [(n, 2, FN(-1)) for n in [1, 3]]

        print('F_ext_list', F_ext_list)
        fu_tot_poteng = FuPotEngTotal(kappa=10, fu_factor=1,
                                      F_ext_list=F_ext_list)
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.fold_task,
                            config=sim_config, n_steps=1)
        cp = st.formed_object
        cp.x_0 = self.fold_task.x_1
        cp.u[:, :] = 0.0
        #cp.u[(4, 5), 2] = -0.001
        #cp.u[(1, 3), 2] = -0.001
        fu_tot_poteng.forming_task = st
        return st
Ejemplo n.º 8
0
    def _get_turn_task2(self):

        self.fold_task.x_1

        u_z = 0.1
        fixed_nodes_xzy = fix([7, 19], (0, 1, 2))
        lift_nodes_z = fix([3, 15], (2), lambda t: t * u_z)

        dof_constraints = fixed_nodes_xzy + lift_nodes_z
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(
            goal_function_type='total potential energy',
            gu={
                'cl': gu_constant_length,
                'dofs': gu_dof_constraints
            },
            acc=1e-5,
            MAX_ITER=1000,
            debug_level=0)
        load_nodes = []
        FN = lambda F: lambda t: t * F
        F_ext_list = [(n, 2, FN(-10)) for n in load_nodes]
        fu_tot_poteng = FuPotEngTotal(kappa=np.array([1000]),
                                      F_ext_list=F_ext_list)
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.fold_task,
                            config=sim_config,
                            n_steps=1)
        fu_tot_poteng.forming_task = st
        cp = st.formed_object
        cp.u[(3, 15), 2] = u_z
        return st
Ejemplo n.º 9
0
    def _get_fold_deform_task(self):
        ft = self.factory_task

        self.init_displ_task.x_1

        fixed_z = fix(self.fixed_z, (2))
        fixed_y = fix(self.fixed_y, (1))
        fixed_x = fix(self.fixed_x, (0))
        link_z = link(self.link_z[0], [2], 1, self.link_z[1], [2], -1)

        dof_constraints = fixed_x + fixed_z + fixed_y + \
            link_z
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)

        def FN(psi):
            return lambda t: psi * t

        psi_constr = [([(i, 1.0)], FN(self.psi_max)) for i in self.psi_lines]

        gu_constant_length = GuConstantLength()

        gu_psi_constraints = \
            GuPsiConstraints(forming_task=ft,
                             psi_constraints=psi_constr)

        sim_config = SimulationConfig(
            goal_function_type='gravity potential energy',
            gu={
                'cl': gu_constant_length,
                'dofs': gu_dof_constraints,
                'psi': gu_psi_constraints
            },
            acc=1e-5,
            MAX_ITER=self.MAXITER,
            debug_level=0)

        fu_tot_poteng = FuPotEngTotal(kappa=np.array([self.kappa]),
                                      F_ext_list=[],
                                      rho=self.rho,
                                      exclude_lines=self.psi_lines)

        sim_config._fu = fu_tot_poteng

        st = SimulationTask(previous_task=self.init_displ_task,
                            config=sim_config,
                            n_steps=self.n_steps)

        #
        #         st = SimulationTask(previous_task=ft,
        #                             config=sim_config, n_steps=self.n_steps)
        fu_tot_poteng.forming_task = st
        #         gu_psi_constraints.forming_task = st
        #
        #         cp = st.formed_object
        #         cp.u = it.u_1

        return st
Ejemplo n.º 10
0
    def _get_load_task(self):
        self.turn_task.x_1

        fixed_nodes_yz = fix([0, 2, 20, 22], (1, 2))  # + \
        fixed_nodes_x = fix([0, 2, 20, 22], (0))  # + \
        #    fix([1, 21], [0, 2])
        link_bnd = []
        if self.stiffening_boundary:
            link_bnd = link([48, 49, 50, 56, 57, 58, 64, 65, 66, 72, 73, 74],
                            [0, 1, 2], 1.0,
                            [51, 52, 53, 59, 60, 61, 67, 68, 69, 75, 76, 77],
                            [0, 1, 2], -1.0)

        dof_constraints = fixed_nodes_x + fixed_nodes_yz + link_bnd
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(
            goal_function_type='total potential energy',
            gu={
                'cl': gu_constant_length,
                'dofs': gu_dof_constraints
            },
            acc=1e-5,
            MAX_ITER=1000,
            debug_level=0)

        def FN(F):
            return lambda t: t * F

        H = 0
        P = 3.5 * self.load_factor
        F_ext_list = [(33, 2, FN(-P)), (34, 2, FN(-P)), (11, 2, FN(-P)),
                      (39, 2, FN(-P)), (40, 2, FN(-P)), (4, 0, FN(0.1609 * H)),
                      (4, 2, FN(-0.2385 * H)), (10, 2, FN(-0.3975 * H)),
                      (16, 0, FN(-0.1609 * H)), (16, 2, FN(-0.2385 * H)),
                      (6, 0, FN(0.1609 * H)), (6, 2, FN(-0.2385 * H)),
                      (12, 2, FN(-0.3975 * H)), (18, 0, FN(-0.1609 * H)),
                      (18, 2, FN(-0.2385 * H))]

        fu_tot_poteng = FuPotEngTotal(kappa=np.array([5.28]),
                                      F_ext_list=F_ext_list)

        #         load_nodes = [10, 11, 12]
        #         FN = lambda F: lambda t: t * F
        #         F_ext_list = [(n, 2, FN(-10)) for n in load_nodes]
        #         fu_tot_poteng = FuPotEngTotal(kappa=np.array([10]),
        # F_ext_list=F_ext_list)  # (2 * n, 2, -1)])
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.turn_task,
                            config=sim_config,
                            n_steps=self.n_load_steps)
        fu_tot_poteng.forming_task = st
        cp = st.formed_object
        cp.x_0 = self.turn_task.x_1
        cp.u[:, :] = 0.0
        return st
Ejemplo n.º 11
0
    def _get_load_task(self):
        self.turn_task.x_1

        fixed_nodes_yz = fix([0, 2, 20,  22], (1, 2))  # + \
        fixed_nodes_x = fix([0, 2, 20, 22], (0))  # + \
        fixed_nodes_middle = fix([1, 21], [0, 1, 2])

#         'Gesamter Randbereich'
#         link_bnd = link([48, 49, 50, 56, 57, 58, 64, 65, 66, 72, 73, 74, 71, 55],
#                         [0, 1, 2], 1.0,
#                         [51, 52, 53, 59, 60, 61, 67,
#                             68, 69, 75, 76, 77, 63, 47],
#                         [0, 1, 2], -1.0)

#         'Ohne mittlere Randknoten'
#         link_bnd = link([48, 49, 50, 56, 57, 58, 64, 65, 66, 72, 73, 74],
#                         [0, 1, 2], 1.0,
#                         [51, 52, 53, 59, 60, 61, 67,
#                             68, 69, 75, 76, 77],
#                         [0, 1, 2], -1.0)

#         'Ohne aeussere Randknoten'
#         link_bnd = link([48, 49, 56, 57, 64, 65, 72, 73, 71, 55],
#                         [0, 1, 2], 1.0,
#                         [51, 52, 59, 60, 67,
#                             68, 75, 76, 63, 47],
#                         [0, 1, 2], -1.0)

        # + link_bnd + # fixed_nodes_middle
        dof_constraints = fixed_nodes_x + fixed_nodes_yz
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(goal_function_type='total potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints},
                                      acc=1e-8, MAX_ITER=1000,
                                      debug_level=0)
        FN = lambda F: lambda t: t * F

        H = 0
        P = 3.5
        F_ext_list = [(33, 2, FN(-P)), (34, 2, FN(-P)), (11, 2, FN(-P)), (39, 2, FN(-P)), (40, 2, FN(-P)), (4, 0, FN(0.1609 * H)), (4, 2, FN(-0.2385 * H)), (10, 2, FN(-0.3975 * H)), (16, 0, FN(-0.1609 * H)), (16, 2, FN(-0.2385 * H)),
                      (6, 0, FN(0.1609 * H)), (6, 2, FN(-0.2385 * H)), (12, 2, FN(-0.3975 * H)), (18, 0, FN(-0.1609 * H)), (18, 2, FN(-0.2385 * H))]

        fu_tot_poteng = FuPotEngTotal(kappa=np.array([5.28]),
                                      F_ext_list=F_ext_list)
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.turn_task,
                            config=sim_config, n_steps=1)

        fu_tot_poteng.forming_task = st
        cp = st.formed_object
        cp.x_0 = self.turn_task.x_1
        cp.u[:, :] = 0.0
        return st
    def _get_load_task(self):
        self.fold_task.x_1
        fat = self.factory_task

        fixed_corner_n = fat.N_grid[(0, 0, -1, -1), (1, -2, 1, -2)].flatten()
        fixed_n = fat.N_grid[(0, 0), (1, -2)].flatten()
        slide_z = fix(fat.N_grid[-1, -2], [2], lambda t: -0.8 * self.L_x * t)
        slide_x = fix(fat.N_grid[-1, -2], [0], lambda t: 0.1 * self.L_y * t)
        loaded_n = fat.N_grid[self.n_x / 2, self.n_y / 2]
        fixed_nodes_xyz = fix(fixed_n, (0, 2)) + slide_z
        #fixed_nodes_xyz = fix(fixed_corner_n, (0, 1, 2))

        dof_constraints = fixed_nodes_xyz
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()

        diag_psi_mask = np.ones_like(fat.L_d_grid, dtype=np.bool_)
        diag_psi_mask[1:-1, 1:-1] = False
        diag_lines = fat.L_d_grid[diag_psi_mask].flatten()
        diag_psi_constraints = [([(i, 1.0)], 0) for i in diag_lines]
        gu_psi_constraints = \
            GuPsiConstraints(forming_task=fat,
                             psi_constraints=diag_psi_constraints)

        sim_config = SimulationConfig(
            goal_function_type='total potential energy',
            gu={
                'cl': gu_constant_length,
                'dofs': gu_dof_constraints,
                'psi': gu_psi_constraints
            },
            acc=1e-5,
            MAX_ITER=1000,
            debug_level=0)

        def FN(F):
            return lambda t: t * F

        P = 0.0 * 30.5 * self.load_factor
        F_ext_list = [(loaded_n, 2, FN(-P))]

        fu_tot_poteng = FuPotEngTotal(kappa=np.array([1.0]),
                                      F_ext_list=F_ext_list,
                                      thickness=1,
                                      exclude_lines=diag_lines)
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.fold_task,
                            config=sim_config,
                            n_steps=self.n_load_steps)
        fu_tot_poteng.forming_task = st
        cp = st.formed_object
        cp.x_0 = self.fold_task.x_1
        cp.u[:, :] = 0.0
        return st
Ejemplo n.º 13
0
    def _get_load_task(self):
        self.fold_task.x_1
        fat = self.factory_task

        fixed_corner_n = fat.N_grid[(0, 0, -1, -1), (1, -2, 1, -2)].flatten()
        fixed_n = fat.N_grid[(0, 0), (1, -2)].flatten()
        slide_z = fix(fat.N_grid[-1, -2], [2], lambda t: -0.8 * self.L_x * t)
        slide_x = fix(fat.N_grid[-1, -2], [0], lambda t: 0.1 * self.L_y * t)
        loaded_n = fat.N_grid[self.n_x / 2, self.n_y / 2]
        fixed_nodes_xyz = fix(fixed_n, (0, 2)) + slide_z
        #fixed_nodes_xyz = fix(fixed_corner_n, (0, 1, 2))

        dof_constraints = fixed_nodes_xyz
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()

        diag_psi_mask = np.ones_like(fat.L_d_grid, dtype=np.bool_)
        diag_psi_mask[1:-1, 1:-1] = False
        diag_lines = fat.L_d_grid[diag_psi_mask].flatten()
        diag_psi_constraints = [([(i, 1.0)], 0)
                                for i in diag_lines]
        gu_psi_constraints = \
            GuPsiConstraints(forming_task=fat,
                             psi_constraints=diag_psi_constraints)

        sim_config = SimulationConfig(
            goal_function_type='total potential energy',
            gu={'cl': gu_constant_length,
                'dofs': gu_dof_constraints,
                'psi': gu_psi_constraints
                },
            acc=1e-5, MAX_ITER=1000,
            debug_level=0
        )

        def FN(F): return lambda t: t * F

        P = 0.0 * 30.5 * self.load_factor
        F_ext_list = [(loaded_n, 2, FN(-P))]

        fu_tot_poteng = FuPotEngTotal(kappa=np.array([1.0]),
                                      F_ext_list=F_ext_list,
                                      thickness=1,
                                      exclude_lines=diag_lines
                                      )
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.fold_task,
                            config=sim_config, n_steps=self.n_load_steps)
        fu_tot_poteng.forming_task = st
        cp = st.formed_object
        cp.x_0 = self.fold_task.x_1
        cp.u[:, :] = 0.0
        return st
Ejemplo n.º 14
0
    def _get_fold_deform_task(self):
        ft = self.factory_task

        self.init_displ_task.x_1

        fixed_z = fix(self.fixed_z, (2))
        fixed_y = fix(self.fixed_y, (1))
        fixed_x = fix(self.fixed_x, (0))
        link_z = link(self.link_z[0], [2], 1, self.link_z[1], [2], -1)

        dof_constraints = fixed_x + fixed_z + fixed_y + \
            link_z
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)

        def FN(psi): return lambda t: psi * t

        psi_constr = [([(i, 1.0)], FN(self.psi_max))
                      for i in self.psi_lines]

        gu_constant_length = GuConstantLength()

        gu_psi_constraints = \
            GuPsiConstraints(forming_task=ft,
                             psi_constraints=psi_constr)

        sim_config = SimulationConfig(goal_function_type='gravity potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints,
                                          'psi': gu_psi_constraints
                                          },
                                      acc=1e-5, MAX_ITER=self.MAXITER,
                                      debug_level=0)

        fu_tot_poteng = FuPotEngTotal(kappa=np.array([self.kappa]),
                                      F_ext_list=[],
                                      rho=self.rho,
                                      exclude_lines=self.psi_lines)

        sim_config._fu = fu_tot_poteng

        st = SimulationTask(previous_task=self.init_displ_task,
                            config=sim_config, n_steps=self.n_steps)

#
#         st = SimulationTask(previous_task=ft,
#                             config=sim_config, n_steps=self.n_steps)
        fu_tot_poteng.forming_task = st
#         gu_psi_constraints.forming_task = st
#
#         cp = st.formed_object
#         cp.u = it.u_1

        return st
Ejemplo n.º 15
0
    def _get_load_task(self):
        self.turn_task.x_1

        fixed_nodes_yz = fix([0, 2, 20,  22], (1, 2))  # + \
        fixed_nodes_x = fix([0, 2, 20, 22], (0))  # + \
        #    fix([1, 21], [0, 2])
        link_bnd = []
        if self.stiffening_boundary:
            link_bnd = link([48, 49, 50, 56, 57, 58, 64, 65, 66, 72, 73, 74],
                            [0, 1, 2], 1.0,
                            [51, 52, 53, 59, 60, 61, 67, 68, 69, 75, 76, 77],
                            [0, 1, 2], -1.0)

        dof_constraints = fixed_nodes_x + fixed_nodes_yz + link_bnd
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(goal_function_type='total potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints},
                                      acc=1e-5, MAX_ITER=1000,
                                      debug_level=0)

        FN = lambda F: lambda t: t * F

        H = 0
        P = 3.5 * self.load_factor
        F_ext_list = [(33, 2, FN(-P)), (34, 2, FN(-P)), (11, 2, FN(-P)), (39, 2, FN(-P)), (40, 2, FN(-P)), (4, 0, FN(0.1609 * H)), (4, 2, FN(-0.2385 * H)), (10, 2, FN(-0.3975 * H)), (16, 0, FN(-0.1609 * H)), (16, 2, FN(-0.2385 * H)),
                      (6, 0, FN(0.1609 * H)), (6, 2, FN(-0.2385 * H)), (12, 2, FN(-0.3975 * H)), (18, 0, FN(-0.1609 * H)), (18, 2, FN(-0.2385 * H))]

        fu_tot_poteng = FuPotEngTotal(kappa=np.array([5.28]),
                                      F_ext_list=F_ext_list)


#         load_nodes = [10, 11, 12]
#         FN = lambda F: lambda t: t * F
#         F_ext_list = [(n, 2, FN(-10)) for n in load_nodes]
#         fu_tot_poteng = FuPotEngTotal(kappa=np.array([10]),
# F_ext_list=F_ext_list)  # (2 * n, 2, -1)])
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.turn_task,
                            config=sim_config, n_steps=self.n_load_steps)
        fu_tot_poteng.forming_task = st
        cp = st.formed_object
        cp.x_0 = self.turn_task.x_1
        cp.u[:, :] = 0.0
        return st
Ejemplo n.º 16
0
    def _get_load_task(self):
        self.fold_task.x_1
        cp = self.factory_task

        n_l_h = cp.N_h[0, (0, -1)].flatten()
        n_r_h = cp.N_h[-1, (0, -1)].flatten()
        n_fixed_y = cp.N_h[(0, -1), 1].flatten()
        n_scheitel = cp.N_h[2, :]
        n_aussen = cp.N_v

        dof_constraints = fix(
            n_l_h, [0, 2]) + fix(n_r_h, [0, 2]) + fix(n_fixed_y, [0, 1])

        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(goal_function_type='total potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints},
                                      acc=1e-10, MAX_ITER=1000,
                                      debug_level=0)
        FN = lambda F: lambda t: t * F
        F_max = 2
        F_min = 1

        F_ext_list = [(7, 2, FN(F_max)), (6, 2, FN(F_min)), (8, 2, FN(F_min))]
        fu_tot_poteng = FuPotEngTotal(kappa=np.array([4.97]),
                                      F_ext_list=F_ext_list)
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.fold_task,
                            config=sim_config, n_steps=10)
        cp = st.formed_object
        cp.L = np.vstack([cp.L, np.array([[6, 7], [7, 8]], dtype='int_')])

        cp.x_0 = self.fold_task.x_1
        cp.u[:, :] = 0.0
        cp.u[[6, 7, 8], 2] = 0.0001
        fu_tot_poteng.forming_task = st
        return st
Ejemplo n.º 17
0
    def _get_load_self_weight(self):
        self.fold_kinem_cntl.x_1

        f = self.factory_task

        exclude_lines = np.arange(9, 17)
        cp = f.formed_object

        N_h = f.N_h
        N_i = f.N_i
        N_v = f.N_v

        fixed_nodes = np.hstack([N_h[[-1, -1], [0, -1]]])
        fixed_nodes = [25, 27]
        fixed_nodes_xyz = fix(
            list(N_h[[0, 0, -1, -1], [0, -1, 0, -1]].flatten()), (2)
            #fixed_nodes, (0, 2)
        )

        slided_nodes = np.hstack([N_h[[0, -1], [0, 0]]])  # , [22, 25]])
        #slide_y = fix(slided_nodes, [1], lambda t: 1.8 * self.L_y * t)
        slide_x = fix([22, 24], [2],
                      lambda t: 0.95 * (self.L_x) * t)
        slide_z = fix(N_h[[1, -2], [1, 1]], [2], lambda t: -0.3 * t)

        dof_constraints = fixed_nodes_xyz + slide_z
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()

        fix_psi_constr = [([(i, 1.0)], 0.0)
                          for i in exclude_lines]
        gu_psi_constraints = \
            GuPsiConstraints(forming_task=self.fold_kinem_cntl,
                             psi_constraints=fix_psi_constr)

        sim_config = SimulationConfig(
            goal_function_type='total potential energy',
            gu={'cl': gu_constant_length,
                'dofs': gu_dof_constraints,
                'psi': gu_psi_constraints
                },
            acc=1e-7, MAX_ITER=1000,
            debug_level=0
        )

        loaded_n = N_h[:, 1].flatten()

        def FN(F): return lambda t: t * F

        P = 0.0 * 30.5
        F_ext_list = []  # (loaded_n, 2, FN(-P))]

        thickness = 0.01
        E_mod = 21.0e+4
        I = 1.0 * thickness**3 / 12.0
        kappa = E_mod * I
        print('kappa', kappa)

        sig_tu = 3000.0
        m_u = sig_tu * 1.0 * thickness**2 / 6.0
        print('m_u', m_u)

        fu_tot_poteng = FuPotEngTotal(
            exclude_lines=exclude_lines,
            kappa=np.array([kappa]),
            thickness=thickness,
            rho=23.6,
            m_u=m_u,
            F_ext_list=F_ext_list
        )
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(
            previous_task=self.fold_kinem_cntl,
            config=sim_config, n_steps=self.n_load_steps
        )
        fu_tot_poteng.forming_task = st
        cp = st.formed_object
        cp.x_0 = self.fold_kinem_cntl.x_1
        cp.u[:, :] = 0.0
        return st
Ejemplo n.º 18
0
    def _get_fold_self_weight_cntl(self):

        self.init_displ_task.x_1

        f = self.factory_task
        cp = f.formed_object

        N_h = f.N_h
        N_i = f.N_i
        N_v = f.N_v
        fixed_nodes_x = fix(
            N_i[1, (0, 1)], (0))
        fixed_nodes_y = fix(
            [N_h[1, 1].flatten()], (1))
        fixed_nodes_z = fix(
            list(N_v[[0, 0, -1, -1], [0, -1, 0, -1]].flatten()) +
            list(N_i[[0, 0, -1, -1], [0, -1, 0, -1]].flatten()), (2)
        )
        cntl_z = fix(N_h[(1, 2), 1], 2, lambda t: 0.1 * t)
        link_nodes_y = link(
            list(N_v[[0, -1], [0, -1]].flatten()), 1, 1.0,
            list(N_i[[0, -1], [0, -1]].flatten()), 1, -1.0,
        )
        link_nodes_z = link(
            list(N_h[[1, 1, 1], [0, 1, -1]].flatten()), 2, 1.0,
            list(N_h[[2, 2, 2], [0, 1, -1]].flatten()), 2, -1.0,
        )
#         link_nodes_z = link(
#             N_h[1, 1], 2, 1.0,
#             N_h[2, 1], 2, -1.0,
#         )

        dof_constraints = fixed_nodes_x + fixed_nodes_z + fixed_nodes_y + \
            link_nodes_z + \
            link_nodes_y

        # link_nodes_yz + link_nodes_z

        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)

        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(goal_function_type='total potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints,
                                          },
                                      acc=1e-5, MAX_ITER=1000,
                                      debug_level=0)

        def FN(F): return lambda t: t * F

        H = 0
        P = 0.1
        F_ext_list = [(N_i[1, 1], 2, FN(-P)), (N_i[1, -1], 2, FN(-P)),
                      (N_h[(0, -1), 0], 2, FN(-P)),
                      (N_h[(0, -1), -1], 2, FN(-P))
                      ]

        fu_tot_poteng = FuPotEngTotal(kappa=0.0, thickness=0.01,
                                      rho=23.6,
                                      F_ext_list=F_ext_list)

        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.init_displ_task,
                            config=sim_config, n_steps=self.n_fold_steps)
        fu_tot_poteng.forming_task = st

        cp = st.formed_object

        N_down = np.hstack([N_h[::3, :].flatten(),
                            N_i[1::3, :].flatten()
                            ])
        print('N_down', N_down)
        N_up = np.hstack([N_i[::3, :].flatten(),
                          N_i[2::3, :].flatten(),
                          N_v[:, :].flatten()])
        print('N_up', N_up)
        cp.u[N_down, 2] -= self.d_down
        cp.u[N_up, 2] += self.d_up
        cp.u[:, 2] += self.d_down

        return st
Ejemplo n.º 19
0
    def _get_load_self_weight(self):
        self.fold_kinem_cntl.x_1

        f = self.factory_task

        exclude_lines = np.arange(9, 17)
        cp = f.formed_object

        N_h = f.N_h
        N_i = f.N_i
        N_v = f.N_v

        fixed_nodes = np.hstack([N_h[[-1, -1], [0, -1]]])
        fixed_nodes = [25, 27]
        fixed_nodes_xyz = fix(
            list(N_h[[0, 0, -1, -1], [0, -1, 0, -1]].flatten()), (2)
            #fixed_nodes, (0, 2)
        )

        slided_nodes = np.hstack([N_h[[0, -1], [0, 0]]])  # , [22, 25]])
        #slide_y = fix(slided_nodes, [1], lambda t: 1.8 * self.L_y * t)
        slide_x = fix([22, 24], [2],
                      lambda t: 0.95 * (self.L_x) * t)
        slide_z = fix(N_h[[1, -2], [1, 1]], [2], lambda t: -0.3 * t)

        dof_constraints = fixed_nodes_xyz + slide_z
        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)
        gu_constant_length = GuConstantLength()

        fix_psi_constr = [([(i, 1.0)], 0.0)
                          for i in exclude_lines]
        gu_psi_constraints = \
            GuPsiConstraints(forming_task=self.fold_kinem_cntl,
                             psi_constraints=fix_psi_constr)

        sim_config = SimulationConfig(
            goal_function_type='total potential energy',
            gu={'cl': gu_constant_length,
                'dofs': gu_dof_constraints,
                'psi': gu_psi_constraints
                },
            acc=1e-7, MAX_ITER=1000,
            debug_level=0
        )

        loaded_n = N_h[:, 1].flatten()

        def FN(F): return lambda t: t * F

        P = 0.0 * 30.5
        F_ext_list = []  # (loaded_n, 2, FN(-P))]

        thickness = 0.01
        E_mod = 21.0e+4
        I = 1.0 * thickness**3 / 12.0
        kappa = E_mod * I
        print 'kappa', kappa

        sig_tu = 3000.0
        m_u = sig_tu * 1.0 * thickness**2 / 6.0
        print 'm_u', m_u

        fu_tot_poteng = FuPotEngTotal(
            exclude_lines=exclude_lines,
            kappa=np.array([kappa]),
            thickness=thickness,
            rho=23.6,
            m_u=m_u,
            F_ext_list=F_ext_list
        )
        sim_config._fu = fu_tot_poteng
        st = SimulationTask(
            previous_task=self.fold_kinem_cntl,
            config=sim_config, n_steps=self.n_load_steps
        )
        fu_tot_poteng.forming_task = st
        cp = st.formed_object
        cp.x_0 = self.fold_kinem_cntl.x_1
        cp.u[:, :] = 0.0
        return st
Ejemplo n.º 20
0
    F_nodes = np.linspace(0, -10, n)
    FN = lambda F: lambda t: t * F
    F_ext_list = [(i + 1, 2, FN(F_n)) for i, F_n in enumerate(F_nodes)]

    fu_tot_poteng = FuPotEngTotal(kappa=np.array([5000.0]), fu_factor=1,
                                  F_ext_list=F_ext_list)  # (2 * n, 2, -1)])

    sim_config._fu = fu_tot_poteng
    sim_task = SimulationTask(previous_task=cp_factory_task,
                              config=sim_config,
                              n_steps=10)
    cp = sim_task.formed_object
    cp.x_0 = np.copy(sim_task.previous_task.formed_object.X)
    cp.u[:, :] = 0.0
    fu_tot_poteng.forming_task = sim_task

    cp.u[1:n + 1, 2] = np.linspace(0, -0.001, n)
    cp.u[n + 1:(2 * n) + 1, 2] = np.linspace(0, -0.0005, n)
    print 'kinematic simulation: u', sim_task.u_1

    cp = sim_task.formed_object
    iL_phi = cp.iL_psi - cp.iL_psi_0
    print 'phi',  iL_phi
    iL_length = np.linalg.norm(cp.iL_vectors, axis=1)
    iL_m = sim_config._fu.kappa * iL_phi * iL_length

    print 'moments', iL_m

    ftv = FTV()
    ftv.add(sim_task.sim_history.viz3d['displ'])
Ejemplo n.º 21
0
    F_nodes = np.linspace(0, -10, n)
    FN = lambda F: lambda t: t * F
    F_ext_list = [(i + 1, 2, FN(F_n)) for i, F_n in enumerate(F_nodes)]

    fu_tot_poteng = FuPotEngTotal(kappa=np.array([5000.0]), fu_factor=1,
                                  F_ext_list=F_ext_list)  # (2 * n, 2, -1)])

    sim_config._fu = fu_tot_poteng
    sim_task = SimulationTask(previous_task=cp_factory_task,
                              config=sim_config,
                              n_steps=10)
    cp = sim_task.formed_object
    cp.x_0 = np.copy(sim_task.previous_task.formed_object.X)
    cp.u[:, :] = 0.0
    fu_tot_poteng.forming_task = sim_task

    cp.u[1:n + 1, 2] = np.linspace(0, -0.001, n)
    cp.u[n + 1:(2 * n) + 1, 2] = np.linspace(0, -0.0005, n)
    print('kinematic simulation: u', sim_task.u_1)

    cp = sim_task.formed_object
    iL_phi = cp.iL_psi - cp.iL_psi_0
    print('phi',  iL_phi)
    iL_length = np.linalg.norm(cp.iL_vectors, axis=1)
    iL_m = sim_config._fu.kappa * iL_phi * iL_length

    print('moments', iL_m)

    ftv = FTV()
    ftv.add(sim_task.sim_history.viz3d['displ'])
Ejemplo n.º 22
0
    def _get_fold_self_weight_cntl(self):

        self.init_displ_task.x_1

        f = self.factory_task
        cp = f.formed_object

        N_h = f.N_h
        N_i = f.N_i
        N_v = f.N_v
        fixed_nodes_x = fix(
            N_i[1, (0, 1)], (0))
        fixed_nodes_y = fix(
            [N_h[1, 1].flatten()], (1))
        fixed_nodes_z = fix(
            list(N_v[[0, 0, -1, -1], [0, -1, 0, -1]].flatten()) +
            list(N_i[[0, 0, -1, -1], [0, -1, 0, -1]].flatten()), (2)
        )
        cntl_z = fix(N_h[(1, 2), 1], 2, lambda t: 0.1 * t)
        link_nodes_y = link(
            list(N_v[[0, -1], [0, -1]].flatten()), 1, 1.0,
            list(N_i[[0, -1], [0, -1]].flatten()), 1, -1.0,
        )
        link_nodes_z = link(
            list(N_h[[1, 1, 1], [0, 1, -1]].flatten()), 2, 1.0,
            list(N_h[[2, 2, 2], [0, 1, -1]].flatten()), 2, -1.0,
        )
#         link_nodes_z = link(
#             N_h[1, 1], 2, 1.0,
#             N_h[2, 1], 2, -1.0,
#         )

        dof_constraints = fixed_nodes_x + fixed_nodes_z + fixed_nodes_y + \
            link_nodes_z + \
            link_nodes_y

        # link_nodes_yz + link_nodes_z

        gu_dof_constraints = GuDofConstraints(dof_constraints=dof_constraints)

        gu_constant_length = GuConstantLength()
        sim_config = SimulationConfig(goal_function_type='total potential energy',
                                      gu={'cl': gu_constant_length,
                                          'dofs': gu_dof_constraints,
                                          },
                                      acc=1e-5, MAX_ITER=1000,
                                      debug_level=0)

        def FN(F): return lambda t: t * F

        H = 0
        P = 0.1
        F_ext_list = [(N_i[1, 1], 2, FN(-P)), (N_i[1, -1], 2, FN(-P)),
                      (N_h[(0, -1), 0], 2, FN(-P)),
                      (N_h[(0, -1), -1], 2, FN(-P))
                      ]

        fu_tot_poteng = FuPotEngTotal(kappa=0.0, thickness=0.01,
                                      rho=23.6,
                                      F_ext_list=F_ext_list)

        sim_config._fu = fu_tot_poteng
        st = SimulationTask(previous_task=self.init_displ_task,
                            config=sim_config, n_steps=self.n_fold_steps)
        fu_tot_poteng.forming_task = st

        cp = st.formed_object

        N_down = np.hstack([N_h[::3, :].flatten(),
                            N_i[1::3, :].flatten()
                            ])
        print 'N_down', N_down
        N_up = np.hstack([N_i[::3, :].flatten(),
                          N_i[2::3, :].flatten(),
                          N_v[:, :].flatten()])
        print 'N_up', N_up
        cp.u[N_down, 2] -= self.d_down
        cp.u[N_up, 2] += self.d_up
        cp.u[:, 2] += self.d_down

        return st