Ejemplo n.º 1
0
def print_results(learners, results):
    # output the results
    print "Learner     CA    IS     Brier  AUC"

    for i in range(len(learners)):
        print "%-8s  %5.4f  %5.3f  %5.3f  %5.3f" % (
            learners[i].name, orngStat.CA(results)[i], orngStat.IS(results)[i],
            orngStat.BrierScore(results)[i], orngStat.AUC(results)[i])
Ejemplo n.º 2
0
def cforange_auc(input_dict):
    import orngStat
    results = input_dict['results']
    method = int(input_dict['method'])
    auc = orngStat.AUC(results,method)
    output_dict = {}
    output_dict['AUC']=auc
    return output_dict  
Ejemplo n.º 3
0
# Description: Demostration of use of cross-validation as provided in orngEval module
# Category:    evaluation
# Uses:        voting.tab
# Classes:     orngTest.crossValidation
# Referenced:  c_performance.htm

import orange, orngTest, orngStat, orngTree

# set up the learners
bayes = orange.BayesLearner()
tree = orngTree.TreeLearner(mForPruning=2)
bayes.name = "bayes"
tree.name = "tree"
learners = [bayes, tree]

# compute accuracies on data
data = orange.ExampleTable("voting")
results = orngTest.crossValidation(learners, data, folds=10)

# output the results
print "Learner  CA     IS     Brier    AUC"
for i in range(len(learners)):
    print "%-8s %5.3f  %5.3f  %5.3f  %5.3f" % (learners[i].name, \
        orngStat.CA(results)[i], orngStat.IS(results)[i],
        orngStat.BrierScore(results)[i], orngStat.AUC(results)[i])
Ejemplo n.º 4
0
import orange
import Orange.classify.svm as svm

data = orange.ExampleTable("vehicle.tab")

svm_easy = svm.SVMLearnerEasy(name="svm easy", folds=3)
svm_normal = svm.SVMLearner(name="svm")
learners = [svm_easy, svm_normal]

import orngStat, orngTest

results = orngTest.crossValidation(learners, data, folds=5)
print "Name     CA        AUC"
for learner, CA, AUC in zip(learners, orngStat.CA(results),
                            orngStat.AUC(results)):
    print "%-8s %.2f      %.2f" % (learner.name, CA, AUC)
Ejemplo n.º 5
0
for l in range(len(learners)):
    print "%s\t%5.3f\t%5.3f" % (learners[l].name, orngStat.sens(cm[l]), orngStat.spec(cm[l]))

cm = orngStat.confusionMatrices(resVeh, vehicle.domain.classVar.values.index("van"))
print
print "Sensitivity and specificity for 'vehicle=van'"
print "method\tsens\tspec"
for l in range(len(learners)):
    print "%s\t%5.3f\t%5.3f" % (learners[l].name, orngStat.sens(cm[l]), orngStat.spec(cm[l]))



print
print "AUC (voting)"

AUCs = orngStat.AUC(res)
for l in range(len(learners)):
    print "%10s: %5.3f" % (learners[l].name, AUCs[l])
    
reload(orngStat)

print
print "AUC for vehicle using weighted single-out method"
print "bayes\ttree\tmajority"
AUCs = orngStat.AUC(resVeh, orngStat.AUC.WeightedOneAgainstAll)
print "%5.3f\t%5.3f\t%5.3f" % tuple(AUCs)

print
print "AUC for vehicle, using different methods"
methods = ["by pairs, weighted", "by pairs", "one vs. all, weighted", "one vs. all"]
print " " *25 + "  \tbayes\ttree\tmajority"
Ejemplo n.º 6
0
import orange, orngTree, orngWrap, orngStat

learner = orngTree.TreeLearner()
data = orange.ExampleTable("voting")
tuner = orngWrap.Tune1Parameter(object=learner,
                                parameter="minSubset",
                                values=[1, 2, 3, 4, 5, 10, 15, 20],
                                evaluate = orngStat.AUC, verbose=2)
classifier = tuner(data)

print "Optimal setting: ", learner.minSubset

import orngTest
untuned = orngTree.TreeLearner()
res = orngTest.crossValidation([untuned, tuner], data)
AUCs = orngStat.AUC(res)

print "Untuned tree: %5.3f" % AUCs[0]
print "Tuned tree: %5.3f" % AUCs[1]


learner = orngTree.TreeLearner(minSubset=10).instance()
data = orange.ExampleTable("voting")
tuner = orngWrap.Tune1Parameter(object=learner,
                                parameter=["split.continuousSplitConstructor.minSubset", "split.discreteSplitConstructor.minSubset"],
                                values=[1, 2, 3, 4, 5, 10, 15, 20],
                                evaluate = orngStat.AUC, verbose=2)
classifier = tuner(data)

print "Optimal setting: ", learner.split.continuousSplitConstructor.minSubset
Ejemplo n.º 7
0
import orange, orngSVM
data = orange.ExampleTable("iris.tab")
lin = orngSVM.SVMLearner(kernel_type=orngSVM.SVMLearner.Linear,
                         name="SVM - Linear")
poly = orngSVM.SVMLearner(kernel_type=orngSVM.SVMLearner.Polynomial,
                          name="SVM - Poly")
rbf = orngSVM.SVMLearner(kernel_type=orngSVM.SVMLearner.RBF, name="SVM - RBF")

learners = [lin, poly, rbf]
import orngTest, orngStat
res = orngTest.crossValidation(learners, data)
print "%15s%8s%8s" % ("Name", "CA", "AUC")
for l, ca, auc in zip(learners, orngStat.CA(res), orngStat.AUC(res)):
    print "%-15s   %.3f   %.3f" % (l.name, ca, auc)
Ejemplo n.º 8
0
bayes = orange.BayesLearner()
tree = orngTree.TreeLearner(mForPruning=2)
bayes.name = "bayes"
tree.name = "tree"
learners = [bayes, tree]

# compute accuracies on data
data = orange.ExampleTable("voting")
res = orngTest.crossValidation(learners, data, folds=10)
cm = orngStat.computeConfusionMatrices(
    res, classIndex=data.domain.classVar.values.index('democrat'))

stat = (
    ('CA', lambda res, cm: orngStat.CA(res)),
    ('Sens', lambda res, cm: orngStat.sens(cm)),
    ('Spec', lambda res, cm: orngStat.spec(cm)),
    ('AUC', lambda res, cm: orngStat.AUC(res)),
    ('IS', lambda res, cm: orngStat.IS(res)),
    ('Brier', lambda res, cm: orngStat.BrierScore(res)),
    ('F1', lambda res, cm: orngStat.F1(cm)),
    ('F2', lambda res, cm: orngStat.Falpha(cm, alpha=2.0)),
    ('MCC', lambda res, cm: orngStat.MCC(cm)),
    ('sPi', lambda res, cm: orngStat.scottsPi(cm)),
)

scores = [s[1](res, cm) for s in stat]
print
print "Learner  " + "".join(["%-7s" % s[0] for s in stat])
for (i, l) in enumerate(learners):
    print "%-8s " % l.name + "".join(["%5.3f  " % s[i] for s in scores])
Ejemplo n.º 9
0
# Description: Demonstrates the use of random forests from orngEnsemble module
# Category:    classification, ensembles
# Classes:     RandomForestLearner
# Uses:        bupa.tab
# Referenced:  orngEnsemble.htm

import orange, orngTree, orngEnsemble

data = orange.ExampleTable('bupa.tab')
tree = orngTree.TreeLearner(minExamples=2, mForPrunning=2, \
                            sameMajorityPruning=True, name='tree')
forest = orngEnsemble.RandomForestLearner(trees=50, name="forest")
learners = [tree, forest]

import orngTest, orngStat
results = orngTest.crossValidation(learners, data, folds=3)
print "Learner  CA     Brier  AUC"
for i in range(len(learners)):
    print "%-8s %5.3f  %5.3f  %5.3f" % (learners[i].name, \
        orngStat.CA(results)[i],
        orngStat.BrierScore(results)[i],
        orngStat.AUC(results)[i])