def run_server(classifier): """ Runs the OSC server for providing predictions. :param classifier: Trained tensorflow classifier :return: """ server = osc_server.OscServer("127.0.0.1", 54321, classifier) server.run_server()
if operation_type == OPERATION_TYPE_CLIENT: osc_order_path += 'client/' elif operation_type == OPERATION_TYPE_TRASHED_CLIENT: osc_order_path += 'trashed_client/' elif operation_type == OPERATION_TYPE_SERVER: osc_order_path += 'server/' elif operation_type == OPERATION_TYPE_SESSION: osc_order_path += 'session/' osc_order_path += operation if operation_type == OPERATION_TYPE_CONTROL and operation == 'stop': osc_order_path = '/ray/server/quit' import osc_server # see top of the file server = osc_server.OscServer(detach) server.setOrderPathArgs(osc_order_path, arg_list) daemon_process = None if (daemon_started and not (operation_type == OPERATION_TYPE_CONTROL and operation in ('start_new', 'start_new_hidden'))): if (operation_type == OPERATION_TYPE_CONTROL and operation == 'stop'): daemon_port_list = [] if wanted_port: daemon_port_list.append(wanted_port) else: for daemon in daemon_list: if (daemon.user == os.getenv('USER') and not daemon.not_default):