Ejemplo n.º 1
0
def ogr_georss_test_rss(filename, only_first_feature):

    if not gdaltest.georss_read_support:
        return 'skip'

    ds = ogr.Open(filename)
    if ds is None:
        return 'fail'

    lyr = ds.GetLayer(0)

    srs = osr.SpatialReference()
    srs.SetWellKnownGeogCS('WGS84')

    if lyr.GetSpatialRef() is None or not lyr.GetSpatialRef().IsSame(srs):
        gdaltest.post_reason('SRS is not the one expected.')
        return 'fail'

    if lyr.GetSpatialRef().ExportToWkt().find(
            'AXIS["Latitude",NORTH],AXIS["Longitude",EAST]') != -1:
        lyr.GetSpatialRef().ExportToWkt()
        gdaltest.post_reason(
            'AXIS definition found with latitude/longitude order!')
        return 'fail'

    feat = lyr.GetNextFeature()
    expected_wkt = 'POINT (2 49)'
    if feat.GetGeometryRef().ExportToWkt() != expected_wkt:
        print(('%s' % feat.GetGeometryRef().ExportToWkt()))
        return 'fail'
    if feat.GetFieldAsString('title') != 'A point':
        return 'fail'
    if feat.GetFieldAsString('author') != 'Author':
        return 'fail'
    if feat.GetFieldAsString('link') != 'http://gdal.org':
        return 'fail'
    if feat.GetFieldAsString('pubDate') != '2008/12/07 20:13:00+02':
        return 'fail'
    if feat.GetFieldAsString('category') != 'First category':
        return 'fail'
    if feat.GetFieldAsString('category_domain') != 'first_domain':
        return 'fail'
    if feat.GetFieldAsString('category2') != 'Second category':
        return 'fail'
    if feat.GetFieldAsString('category2_domain') != 'second_domain':
        return 'fail'

    feat = lyr.GetNextFeature()
    expected_wkt = 'LINESTRING (2 48,2.1 48.1,2.2 48.0)'
    if only_first_feature is False and feat.GetGeometryRef().ExportToWkt(
    ) != expected_wkt:
        print(('%s' % feat.GetGeometryRef().ExportToWkt()))
        return 'fail'
    if feat.GetFieldAsString('title') != 'A line':
        return 'fail'

    feat = lyr.GetNextFeature()
    expected_wkt = 'POLYGON ((2 50,2.1 50.1,2.2 48.1,2.1 46.1,2 50))'
    if only_first_feature is False and feat.GetGeometryRef().ExportToWkt(
    ) != expected_wkt:
        print(('%s' % feat.GetGeometryRef().ExportToWkt()))
        return 'fail'
    if feat.GetFieldAsString('title') != 'A polygon':
        return 'fail'

    feat = lyr.GetNextFeature()
    expected_wkt = 'POLYGON ((2 49,2.0 49.5,2.2 49.5,2.2 49.0,2 49))'
    if only_first_feature is False and feat.GetGeometryRef().ExportToWkt(
    ) != expected_wkt:
        print(('%s' % feat.GetGeometryRef().ExportToWkt()))
        return 'fail'
    if feat.GetFieldAsString('title') != 'A box':
        return 'fail'

    return 'success'
Ejemplo n.º 2
0
def test_gdal_contour_1():
    if test_cli_utilities.get_gdal_contour_path() is None:
        pytest.skip()

    try:
        os.remove('tmp/contour.shp')
    except OSError:
        pass
    try:
        os.remove('tmp/contour.dbf')
    except OSError:
        pass
    try:
        os.remove('tmp/contour.shx')
    except OSError:
        pass

    drv = gdal.GetDriverByName('GTiff')
    sr = osr.SpatialReference()
    sr.ImportFromEPSG(4326)
    wkt = sr.ExportToWkt()

    size = 160
    precision = 1. / size

    ds = drv.Create('tmp/gdal_contour.tif', size, size, 1)
    ds.SetProjection(wkt)
    ds.SetGeoTransform([1, precision, 0, 50, 0, -precision])

    raw_data = array.array('h', [10 for i in range(int(size / 2))]).tostring()
    for i in range(int(size / 2)):
        ds.WriteRaster(int(size / 4),
                       i + int(size / 4),
                       int(size / 2),
                       1,
                       raw_data,
                       buf_type=gdal.GDT_Int16,
                       band_list=[1])

    raw_data = array.array('h', [20 for i in range(int(size / 2))]).tostring()
    for i in range(int(size / 4)):
        ds.WriteRaster(int(size / 4) + int(size / 8),
                       i + int(size / 4) + int(size / 8),
                       int(size / 4),
                       1,
                       raw_data,
                       buf_type=gdal.GDT_Int16,
                       band_list=[1])

    raw_data = array.array('h', [25 for i in range(int(size / 4))]).tostring()
    for i in range(int(size / 8)):
        ds.WriteRaster(int(size / 4) + int(size / 8) + int(size / 16),
                       i + int(size / 4) + int(size / 8) + int(size / 16),
                       int(size / 8),
                       1,
                       raw_data,
                       buf_type=gdal.GDT_Int16,
                       band_list=[1])

    ds = None

    (_, err) = gdaltest.runexternal_out_and_err(
        test_cli_utilities.get_gdal_contour_path() +
        ' -a elev -i 10 tmp/gdal_contour.tif tmp/contour.shp')
    assert (err is None or err == ''), 'got error/warning'

    ds = ogr.Open('tmp/contour.shp')

    expected_envelopes = [[1.25, 1.75, 49.25, 49.75],
                          [
                              1.25 + 0.125, 1.75 - 0.125, 49.25 + 0.125,
                              49.75 - 0.125
                          ]]
    expected_height = [10, 20]

    lyr = ds.ExecuteSQL("select * from contour order by elev asc")

    assert lyr.GetSpatialRef().ExportToWkt(
    ) == wkt, 'Did not get expected spatial ref'

    assert lyr.GetFeatureCount() == len(expected_envelopes)

    i = 0
    feat = lyr.GetNextFeature()
    while feat is not None:
        envelope = feat.GetGeometryRef().GetEnvelope()
        assert feat.GetField('elev') == expected_height[i]
        for j in range(4):
            if abs(expected_envelopes[i][j] -
                   envelope[j]) > precision / 2 * 1.001:
                print('i=%d, wkt=%s' %
                      (i, feat.GetGeometryRef().ExportToWkt()))
                print(feat.GetGeometryRef().GetEnvelope())
                pytest.fail(
                    '%f, %f' %
                    (expected_envelopes[i][j] - envelope[j], precision / 2))
        i = i + 1
        feat = lyr.GetNextFeature()

    ds.ReleaseResultSet(lyr)
    ds.Destroy()
Ejemplo n.º 3
0
def main():
    global inputArgs, grib, dir_path                          #Make our global vars: grib is the object that will hold our Grib Class.
    dir_path = os.path.dirname(os.path.realpath(__file__))
    comparison_days =[0,-7]
    inputArgs = handle_args(sys.argv)               #All input arguments if run on the command line.
    for deltaDay in comparison_days:
        if deltaDay == 0:
            date2 = None
        else:
            date2 = ((datetime.datetime.now(pytz.timezone('US/Pacific'))) + datetime.timedelta(days=deltaDay)).strftime(
            "%Y%m%d")

        ##############
        # Debugging
        #inputArgs.date = '20180327'
        inputArgs.date = time.strftime("%Y%m%d")
        inputArgs.date2 = date2 #Comment this out for just one date
        inputArgs.map = True  # Make the map and save png to folder.
        findValueAtPoint = False  # Find all the values at specific lat/lng points within an excel file.
        #################

        grib = Grib()                                   #Assign variable to the Grib Class.
        grib.model = inputArgs.model                    #Our model will always be "snodas" for this program
        grib.displayunits = inputArgs.displayunits
        grib.basin = inputArgs.basin                    # Basin can be "French_Meadows", "Hell_Hole", or "MFP", this gets shapefile

        # Bounding box will clip the raster to focus in on a region of interest (e.g. CA) This makes the raster MUCH smaller
        # and easier to work with. See gdal.Open -> gdal.Translate below for where this is acutally used.
        grib.bbox = [-125.0,50.0,-115.0,30.0]           #[upper left lon, upper left lat, lower left lon, lower left lat]
        grib = get_snowdas(grib, inputArgs.date)                        #Get the snodas file and save data into the object variable grib
        #pngFile = makePNG()
        #Any reprojections of grib.gribAll have already been done in get_snowdas.
        #The original projection of snodas is EPSG:4326 (lat/lng), so it has been changed to EPSG:3875 (x/y) in get_snodas
        projInfo = grib.gribAll.GetProjection()

        geoinformation = grib.gribAll.GetGeoTransform() #Get the geoinformation from the grib file.

        xres = geoinformation[1]
        yres = geoinformation[5]
        xmin = geoinformation[0]
        xmax = geoinformation[0] + (xres * grib.gribAll.RasterXSize)
        ymin = geoinformation[3] + (yres * grib.gribAll.RasterYSize)
        ymax = geoinformation[3]

        spatialRef = osr.SpatialReference()
        spatialRef.ImportFromWkt(projInfo)
        spatialRefProj = spatialRef.ExportToProj4()

        # create a grid of xy (or lat/lng) coordinates in the original projection
        xy_source = np.mgrid[xmin:xmax:xres, ymax:ymin:yres]
        xx, yy = xy_source

        # A numpy grid of all the x/y into lat/lng
        # This will convert your projection to lat/lng (it's this simple).
        lons, lats = Proj(spatialRefProj)(xx, yy, inverse=True)


        # Find the center point of each grid box.
        # This says move over 1/2 a grid box in the x direction and move down (since yres is -) in the
        # y direction. Also, the +yres (remember, yres is -) is saying the starting point of this array will
        # trim off the y direction by one row (since it's shifted off the grid)
        xy_source_centerPt = np.mgrid[xmin + (xres / 2):xmax:xres, ymax + (yres / 2):ymin:yres]
        xxC, yyC = xy_source_centerPt

        lons_centerPt, lats_centerPt = Proj(spatialRefProj)(xxC, yyC, inverse=True)

        mask = createMask(xxC, yyC, spatialRefProj)
        grib.basinTotal = calculateBasin(mask, grib, xres, yres)

        # Calculate the difference between two rasters
        if inputArgs.date2 != None:
            grib.basinTotal[0] = compareDates(mask, grib, xres, yres)[0]

        if grib.basin == 'Hell_Hole': #Part of this basin is SMUD's teritory, so remove 92% of water in this basin
            grib.basin = 'Hell_Hole_SMUD' #This is just to get the correct directory structure
            submask = createMask(xxC, yyC, spatialRefProj)
            smudBasinTotal = calculateBasin(submask, grib, xres, yres)
            print("Extracting 92% of the SWE values from SMUD Basin...\n" + "Current Basin Total: " + str(grib.basinTotal[0]))
            grib.basinTotal[0] = grib.basinTotal[0] - (0.92*smudBasinTotal[0])
            print("Smud Total: "+str(smudBasinTotal[0])+"\n New Total: "+str(grib.basinTotal[0]))
            grib.basin = 'Hell_Hole' #reset back

        #Need to do this after Heel_Hole's data has been manipulated (to account for SMUD)
        elevation_bins = calculateByElevation(mask, grib, xres, yres)

        #Send data for writing to Excel File
        if deltaDay == 0:
            excel_output(elevation_bins)

        if inputArgs.plot == True:
            makePlot(elevation_bins, deltaDay)
        print(elevation_bins)

        print(inputArgs.date," Basin Total: ", grib.basinTotal[0])

        #findValue will return a dataframe with SWE values at various lat/lng points.
        df_ptVal = None
        if findValueAtPoint == True:
            df_ptVal = findPointValue(spatialRefProj, xy_source)

        if inputArgs.map == True:
            fig = plt.figure()
            ax = fig.add_subplot(111)
            m = Basemap(llcrnrlon=-122.8, llcrnrlat=37.3,
                        urcrnrlon=-119.0, urcrnrlat=40.3, ax=ax)

            m.arcgisimage(service='ESRI_Imagery_World_2D', xpixels=2000, verbose=True)
            #m.arcgisimage(service='World_Shaded_Relief', xpixels=2000, verbose=True)

            #For inset
            # loc =>'upper right': 1,
            # 'upper left': 2,
            # 'lower left': 3,
            # 'lower right': 4,
            # 'right': 5,
            # 'center left': 6,
            # 'center right': 7,
            # 'lower center': 8,
            # 'upper center': 9,
            # 'center': 10
            axin = inset_axes(m.ax, width="40%", height="40%", loc=8)

            m2 = Basemap(llcrnrlon=-120.7, llcrnrlat=38.7,
                         urcrnrlon=-120.1, urcrnrlat=39.3, ax=axin)

            m2.arcgisimage(service='ESRI_Imagery_World_2D', xpixels=2000, verbose=True)
            mark_inset(ax, axin, loc1=2, loc2=4, fc="none", ec="0.5")

            ###################################DEBUGGING AREA###############################################################
            # Debugging: Test to prove a given lat/lng pair is accessing the correct grid box:

            #*********TEST 1: Test for center points
            #grib.data[0,0] = 15 #increase the variable by some arbitrary amount so it stands out.
            #xpts, ypts = m(lons_centerPt[0,0],lats_centerPt[0,0]) #This should be in the dead center of grid[0,0]
            #m.plot(xpts,ypts, 'ro')

            #*********TEST 2: Test for first grid box
            # Test to see a if the point at [x,y] is in the upper right corner of the cell (it better be!)
            #xpts, ypts = m(lons[0, 0], lats[0, 0])  # should be in upper right corner of cell
            #m.plot(xpts, ypts, 'bo')

            # *********TEST 3: Test for first grid box
            # Test to see the location of center points of each grid in polygon
            # To make this work, uncomment the variables in def create_mask
            #debug_Xpoly_center_pts, debug_Ypoly_center_pts = m(debugCenterX, debugCenterY)
            #m.plot(debug_Xpoly_center_pts, debug_Ypoly_center_pts, 'bo')

            # *********TEST 4: Test grid box size (In lat lng coords)
            # This is for use in a Basemap projection with lat/lon (e.g. EPSG:4326)
            #testX = np.array([[-120.1, -120.1], [-120.10833, -120.10833]])
            #testY = np.array([[39.0, 39.00833], [39.0, 39.00833]])
            # testVal = np.array([[4,4],[4,4]])

            # For use in basemap projection with x/y (e.g. espg:3857. In m=basemap just include the argument projection='merc')
            # testX = np.array([[500975, 500975], [(500975 + 1172), (500975 + 1172)]])
            # testY = np.array([[502363, (502363 + 1172)], [502363, (502363 + 1172)]])
            #testVal = np.array([[18, 18], [18, 18]])
            #im1 = m.pcolormesh(testX, testY, testVal, cmap=plt.cm.jet, vmin=0.1, vmax=10, latlon=False, alpha=0.5)

            # Test to see all points
            # xtest, ytest = m(lons,lats)
            # m.plot(xtest,ytest, 'bo')
            ################################################################################################################

            hr = 0
            makeMap(lons, lats, hr, m, m2,df_ptVal, deltaDay)

    return
Ejemplo n.º 4
0
    def processAlgorithm(self, parameters, context, feedback):
        rasterPath = self.getParameterValue(self.INPUT_DEM)
        layer = QgsProcessingUtils.mapLayerFromString(self.getParameterValue(self.BOUNDARY_LAYER), context)
        step = self.getParameterValue(self.STEP)
        percentage = self.getParameterValue(self.USE_PERCENTAGE)

        outputPath = self.getOutputValue(self.OUTPUT_DIRECTORY)

        rasterDS = gdal.Open(rasterPath, gdal.GA_ReadOnly)
        geoTransform = rasterDS.GetGeoTransform()
        rasterBand = rasterDS.GetRasterBand(1)
        noData = rasterBand.GetNoDataValue()

        cellXSize = abs(geoTransform[1])
        cellYSize = abs(geoTransform[5])
        rasterXSize = rasterDS.RasterXSize
        rasterYSize = rasterDS.RasterYSize

        rasterBBox = QgsRectangle(geoTransform[0],
                                  geoTransform[3] - cellYSize * rasterYSize,
                                  geoTransform[0] + cellXSize * rasterXSize,
                                  geoTransform[3])
        rasterGeom = QgsGeometry.fromRect(rasterBBox)

        crs = osr.SpatialReference()
        crs.ImportFromProj4(str(layer.crs().toProj4()))

        memVectorDriver = ogr.GetDriverByName('Memory')
        memRasterDriver = gdal.GetDriverByName('MEM')

        features = QgsProcessingUtils.getFeatures(layer, context)
        total = 100.0 / layer.featureCount() if layer.featureCount() else 0

        for current, f in enumerate(features):
            geom = f.geometry()
            intersectedGeom = rasterGeom.intersection(geom)

            if intersectedGeom.isEmpty():
                feedback.pushInfo(
                    self.tr('Feature {0} does not intersect raster or '
                            'entirely located in NODATA area').format(f.id()))
                continue

            fName = os.path.join(
                outputPath, 'hystogram_%s_%s.csv' % (layer.name(), f.id()))

            ogrGeom = ogr.CreateGeometryFromWkt(intersectedGeom.exportToWkt())
            bbox = intersectedGeom.boundingBox()
            xMin = bbox.xMinimum()
            xMax = bbox.xMaximum()
            yMin = bbox.yMinimum()
            yMax = bbox.yMaximum()

            (startColumn, startRow) = raster.mapToPixel(xMin, yMax, geoTransform)
            (endColumn, endRow) = raster.mapToPixel(xMax, yMin, geoTransform)

            width = endColumn - startColumn
            height = endRow - startRow

            srcOffset = (startColumn, startRow, width, height)
            srcArray = rasterBand.ReadAsArray(*srcOffset)

            if srcOffset[2] == 0 or srcOffset[3] == 0:
                feedback.pushInfo(
                    self.tr('Feature {0} is smaller than raster '
                            'cell size').format(f.id()))
                continue

            newGeoTransform = (
                geoTransform[0] + srcOffset[0] * geoTransform[1],
                geoTransform[1],
                0.0,
                geoTransform[3] + srcOffset[1] * geoTransform[5],
                0.0,
                geoTransform[5]
            )

            memVDS = memVectorDriver.CreateDataSource('out')
            memLayer = memVDS.CreateLayer('poly', crs, ogr.wkbPolygon)

            ft = ogr.Feature(memLayer.GetLayerDefn())
            ft.SetGeometry(ogrGeom)
            memLayer.CreateFeature(ft)
            ft.Destroy()

            rasterizedDS = memRasterDriver.Create('', srcOffset[2],
                                                  srcOffset[3], 1, gdal.GDT_Byte)
            rasterizedDS.SetGeoTransform(newGeoTransform)
            gdal.RasterizeLayer(rasterizedDS, [1], memLayer, burn_values=[1])
            rasterizedArray = rasterizedDS.ReadAsArray()

            srcArray = numpy.nan_to_num(srcArray)
            masked = numpy.ma.MaskedArray(srcArray,
                                          mask=numpy.logical_or(srcArray == noData,
                                                                numpy.logical_not(rasterizedArray)))

            self.calculateHypsometry(f.id(), fName, feedback, masked,
                                     cellXSize, cellYSize, percentage, step)

            memVDS = None
            rasterizedDS = None
            feedback.setProgress(int(current * total))

        rasterDS = None
Ejemplo n.º 5
0
def test_ogr_pds4_create_table_binary():

    options = ['VAR_LOGICAL_IDENTIFIER=logical_identifier',
               'VAR_TITLE=title',
               'VAR_INVESTIGATION_AREA_NAME=ian',
               'VAR_INVESTIGATION_AREA_LID_REFERENCE=INVESTIGATION_AREA_LID_REFERENCE',
               'VAR_OBSERVING_SYSTEM_NAME=osn',
               'VAR_TARGET=target',
               'VAR_TARGET_TYPE=target']

    for signedness in ['Signed', 'Unsigned']:
        for endianness in ['LSB', 'MSB']:

            ds = ogr.GetDriverByName('PDS4').CreateDataSource('/vsimem/test.xml',
                                                            options=options)

            layername = endianness
            with gdaltest.config_options( {'PDS4_ENDIANNESS': endianness,
                                           'PDS4_SIGNEDNESS': signedness} ):
                lyr = ds.CreateLayer(layername, options = ['TABLE_TYPE=BINARY'])
                fld = ogr.FieldDefn('bool', ogr.OFTInteger)
                fld.SetSubType(ogr.OFSTBoolean)
                lyr.CreateField(fld)

                fld = ogr.FieldDefn('byte', ogr.OFTInteger)
                fld.SetWidth(2)
                lyr.CreateField(fld)

                fld = ogr.FieldDefn('int16', ogr.OFTInteger)
                fld.SetSubType(ogr.OFSTInt16)
                lyr.CreateField(fld)

                lyr.CreateField(ogr.FieldDefn('int', ogr.OFTInteger))
                lyr.CreateField(ogr.FieldDefn('int64', ogr.OFTInteger64))

                fld = ogr.FieldDefn('float', ogr.OFTReal)
                fld.SetSubType(ogr.OFSTFloat32)
                lyr.CreateField(fld)

                lyr.CreateField(ogr.FieldDefn('real', ogr.OFTReal))
                lyr.CreateField(ogr.FieldDefn('str', ogr.OFTString))
                lyr.CreateField(ogr.FieldDefn('datetime', ogr.OFTDateTime))
                lyr.CreateField(ogr.FieldDefn('date', ogr.OFTDate))
                lyr.CreateField(ogr.FieldDefn('time', ogr.OFTTime))

            sign = -1 if signedness == 'Signed' else 1

            f = ogr.Feature(lyr.GetLayerDefn())
            f['bool'] = 1
            f['byte'] = sign * 9
            f['int16'] = sign * 12345
            f['int'] = sign * 123456789
            f['int64'] = sign * 1234567890123
            f['float'] = 1.25
            f['real'] = 1.2567
            f['str'] = 'foo'
            f['datetime'] = '2019/01/24 12:34:56.789+00'
            f['date'] = '2019-01-24'
            f['time'] = '12:34:56.789'
            lyr.CreateFeature(f)

            ds = None

            f = gdal.VSIFOpenL('/vsimem/test.xml', 'rb')
            data = gdal.VSIFReadL(1, 100000, f).decode('ascii')
            gdal.VSIFCloseL(f)

            assert '_Binary' in data
            assert '_Character' not in data
            if endianness == 'LSB':
                assert 'LSB' in data, data
                assert 'MSB' not in data, data
            else:
                assert 'MSB' in data, data
                assert 'LSB' not in data, data

            if signedness == 'Signed':
                assert 'Signed' in data, data
                assert 'Unsigned' not in data, data
            else:
                assert 'Unsigned' in data, data
                assert 'Signed' not in data, data

            assert validate_xml('/vsimem/test.xml')

            ds = ogr.Open('/vsimem/test.xml')
            layername = endianness
            lyr = ds.GetLayerByName(layername)
            assert lyr.GetLayerDefn().GetFieldCount() == 11
            f = lyr.GetNextFeature()
            assert f['bool']
            assert f['byte'] == sign * 9
            assert f['int16'] == sign * 12345
            assert f['int'] == sign * 123456789
            assert f['int64'] == sign * 1234567890123
            assert f['float'] == 1.25
            assert f['real'] == 1.2567
            assert f['str'] == 'foo'
            assert f['datetime'] == '2019/01/24 12:34:56.789+00'
            assert f['date'] == '2019/01/24'
            assert f['time'] == '12:34:56.789'

    ds = None

    # Add new layer
    ds = ogr.Open('/vsimem/test.xml', update = 1)
    sr = osr.SpatialReference()
    sr.SetFromUserInput('WGS84')
    lyr = ds.CreateLayer('bar', geom_type = ogr.wkbPoint25D, srs = sr,
                         options = ['TABLE_TYPE=BINARY'])
    f = ogr.Feature(lyr.GetLayerDefn())
    f.SetGeometryDirectly(ogr.CreateGeometryFromWkt('POINT Z (1 2 3)'))
    lyr.CreateFeature(f)
    ds = None

    assert validate_xml('/vsimem/test.xml')

    ds = ogr.Open('/vsimem/test.xml')
    lyr = ds.GetLayerByName('bar')
    f = lyr.GetNextFeature()
    assert f.GetGeometryRef().ExportToIsoWkt() == 'POINT Z (1 2 3)'
    ds = None

    ogr.GetDriverByName('PDS4').DeleteDataSource('/vsimem/test.xml')
    gdal.Rmdir('/vsimem/test')
Ejemplo n.º 6
0
def resize_and_resample_dataset_uri(
        original_dataset_uri, bounding_box, out_pixel_size, output_uri,
        resample_method, output_datatype=None):


    L.critical('DEPRECATED!!!'
               ''
               'resize_and_resample_dataset_uri is deprecated. use hb.resample_to_match (Which is a wrapper).')
    """
    A function to  a datsaet to larger or smaller pixel sizes

    Args:
        original_dataset_uri (string): a GDAL dataset
        bounding_box (list): [upper_left_x, upper_left_y, lower_right_x,
            lower_right_y]
        out_pixel_size (?): the pixel size in projected linear units
        output_uri (string): the location of the new resampled GDAL dataset
        resample_method (string): the resampling technique, one of
            "nearest|bilinear|cubic|cubic_spline|lanczos"

    Returns:
        nothing

    """

    resample_dict = {
        "nearest": gdal.GRA_NearestNeighbour,
        "near": gdal.GRA_NearestNeighbour,
        "nearest_neighbor": gdal.GRA_NearestNeighbour,
        "bilinear": gdal.GRA_Bilinear,
        "cubic": gdal.GRA_Cubic,
        "cubicspline": gdal.GRA_CubicSpline,
        "lanczos": gdal.GRA_Lanczos,
        "average": gdal.GRA_Average
    }


    original_dataset = gdal.Open(original_dataset_uri)
    original_band = original_dataset.GetRasterBand(1)
    original_nodata = original_band.GetNoDataValue()
    #gdal python doesn't handle unsigned nodata values well and sometime returns
    #negative numbers.  this guards against that
    if original_band.DataType == gdal.GDT_Byte:
        original_nodata %= 2**8
    if original_band.DataType == gdal.GDT_UInt16:
        original_nodata %= 2**16
    if original_band.DataType == gdal.GDT_UInt32:
        original_nodata %= 2**32

    if not output_datatype:
        output_datatype = original_band.DataType

    if original_nodata is None:
        L.debug('Nodata not defined in resize_and_resample_dataset_uri on ' + str(original_dataset_uri) + '. This can be correct but is dangerous because you might have the no_data_value contribute to the resampled values.')
        original_nodata = -9999

    original_sr = osr.SpatialReference()
    original_sr.ImportFromWkt(original_dataset.GetProjection())

    output_geo_transform = [
        bounding_box[0], out_pixel_size, 0.0, bounding_box[1], 0.0,
        -out_pixel_size]
    new_x_size = abs(
        int(np.round((bounding_box[2] - bounding_box[0]) / out_pixel_size)))
    new_y_size = abs(
        int(np.round((bounding_box[3] - bounding_box[1]) / out_pixel_size)))

    #create the new x and y size
    block_size = original_band.GetBlockSize()
    #If the original band is tiled, then its x blocksize will be different than
    #the number of columns
    if block_size[0] != original_band.XSize and original_band.XSize > 256 and original_band.YSize > 256:
        #it makes sense for a wad of invest functions to use 256x256 blocks, lets do that here
        block_size[0] = 256
        block_size[1] = 256
        gtiff_creation_options = [
            'TILED=YES', 'BIGTIFF=IF_SAFER', 'BLOCKXSIZE=%d' % block_size[0],
                                             'BLOCKYSIZE=%d' % block_size[1]]
    else:
        #this thing is so small or strangely aligned, use the default creation options
        gtiff_creation_options = []

    hb.create_directories([os.path.dirname(output_uri)])
    gdal_driver = gdal.GetDriverByName('GTiff')

    output_dataset = gdal_driver.Create(
        output_uri, new_x_size, new_y_size, 1, output_datatype,
        options=gtiff_creation_options)
    output_band = output_dataset.GetRasterBand(1)
    if original_nodata is None:
        original_nodata = float(
            calculate_value_not_in_dataset(original_dataset))

    output_band.SetNoDataValue(original_nodata)

    # Set the geotransform
    output_dataset.SetGeoTransform(output_geo_transform)
    output_dataset.SetProjection(original_sr.ExportToWkt())

    #need to make this a closure so we get the current time and we can affect
    #state
    def reproject_callback(df_complete, psz_message, p_progress_arg):
        """The argument names come from the GDAL API for callbacks."""
        try:
            current_time = time.time()
            if ((current_time - reproject_callback.last_time) > 5.0 or
                    (df_complete == 1.0 and reproject_callback.total_time >= 5.0)):
                # LOGGER.info(
                #     "ReprojectImage %.1f%% complete %s, psz_message %s",
                #     df_complete * 100, p_progress_arg[0], psz_message)
                print ("ReprojectImage for resize_and_resample_dataset_uri " + str(df_complete * 100) + " percent complete")
                reproject_callback.last_time = current_time
                reproject_callback.total_time += current_time
        except AttributeError:
            reproject_callback.last_time = time.time()
            reproject_callback.total_time = 0.0

    # Perform the projection/resampling
    gdal.ReprojectImage(
        original_dataset, output_dataset, original_sr.ExportToWkt(),
        original_sr.ExportToWkt(), resample_dict[resample_method], 0, 0,
        reproject_callback, [output_uri])

    #Make sure the dataset is closed and cleaned up
    original_band = None
    gdal.Dataset.__swig_destroy__(original_dataset)
    original_dataset = None

    output_dataset.FlushCache()
    gdal.Dataset.__swig_destroy__(output_dataset)
    output_dataset = None
    hb.calculate_raster_stats_uri(output_uri)
Ejemplo n.º 7
0
# -*- coding: utf-8 -*-
"""
Created on Wed Apr  4 18:55:33 2012

@author: mag
"""

from osgeo import osr, gdal

infile = '/home/mag/data/OTHER/RS2 Agulhas and Lion/RS2_FQA_1xQGSS20101218_173930_00000005/'

# get the existing coordinate system
ds = gdal.Open("RADARSAT_2_CALIB:SIGMA0:" + infile + "product.xml")
old_cs= osr.SpatialReference()
old_cs.ImportFromWkt(ds.GetProjectionRef())

# create the new coordinate system
wgs84_wkt = """
GEOGCS["WGS 84",
    DATUM["WGS_1984",
        SPHEROID["WGS 84",6378137,298.257223563,
            AUTHORITY["EPSG","7030"]],
        AUTHORITY["EPSG","6326"]],
    PRIMEM["Greenwich",0,
        AUTHORITY["EPSG","8901"]],
    UNIT["degree",0.01745329251994328,
        AUTHORITY["EPSG","9122"]],
    AUTHORITY["EPSG","4326"]]"""
new_cs = osr.SpatialReference()
new_cs .ImportFromWkt(wgs84_wkt)
from base64 import b64decode
import os
import re

import osmium as o
import osgeo.ogr as ogr
import osgeo.osr as osr
from shapely.wkb import loads, dumps
from shapely.prepared import prep

from osm_export_tool import GeomType, File

fab = o.geom.WKBFactory()
create_geom = lambda b : ogr.CreateGeometryFromWkb(bytes.fromhex(b))
epsg_4326 = osr.SpatialReference()
epsg_4326.ImportFromEPSG(4326)

CLOSED_WAY_KEYS = ['aeroway','amenity','boundary','building','building:part','craft','geological','historic','landuse','leisure','military','natural','office','place','shop','sport','tourism']
CLOSED_WAY_KEYVALS = {'highway':'platform','public_transport':'platform'}
def closed_way_is_polygon(tags):
    for key in CLOSED_WAY_KEYS:
        if key in tags:
            return True
    for key, val in CLOSED_WAY_KEYVALS.items():
        if key in tags and tags[key] == val:
            return True
    return False

def make_filename(s):
    return s.lower().replace(' ','_')
Ejemplo n.º 9
0
def test_osr_epsg_treats_as_northing_easting(epsg_code, is_northing_easting):

    srs = osr.SpatialReference()
    srs.ImportFromEPSG(epsg_code)
    assert srs.EPSGTreatsAsNorthingEasting() == is_northing_easting
Ejemplo n.º 10
0
def epsg2wkt(epsg):
    """ """
    srs = osr.SpatialReference()
    srs.ImportFromEPSG(epsg)
    return srs.ExportToWkt()
Ejemplo n.º 11
0
    def create_representation(self, input_path, input_data, workspace, cfg,
                              src_meta):
        """ """

        logger.info('[{}] Start initialisation.'.format(
            datetime.datetime.now()))

        temporary_files = []

        # Set projections as OSR spatial reference.
        # By the way we add '+over' to the output projection if cylindrical
        # (if data around dateline, we'll keep things continuous until the tiling
        # which will use a modulo to set a correct tile numbering).
        input_proj = cfg['input_proj']
        input_srs = osr.SpatialReference()
        input_srs.ImportFromEPSG(input_proj)
        output_proj = cfg['output_proj']
        output_srs = osr.SpatialReference()
        if output_proj in mtdt.CYLINDRIC_PROJ:
            tmp_srs = osr.SpatialReference()
            tmp_srs.ImportFromEPSG(output_proj)
            output_srs.ImportFromProj4(tmp_srs.ExportToProj4() + ' +over')
        else:
            output_srs.ImportFromEPSG(output_proj)

        # Get trajectory GCPs in output projection
        input_dset = gdal.Open(input_path)
        input_tf = gdal.Transformer(input_dset, None, ['MAX_GCP_ORDER=-1'])
        traj_gcps = get_trajectory_gcps(input_dset,
                                        input_srs,
                                        output_srs,
                                        input_transformer=input_tf)

        # Get trajectory resolution
        traj_res = get_trajectory_mean_resolution(input_dset,
                                                  input_srs,
                                                  input_transformer=input_tf)
        # traj_res = get_trajectory_output_resolutions(input_dset, input_srs, output_srs,
        #                                              input_transformer=input_tf)

        # Set output options
        map_extent = [float(ext) for ext in cfg['extent'].split(' ')]
        tilesmap = TilesMap(map_extent)
        min_zoom = cfg['output_options'].get('min-zoom', '3')
        max_zoom = cfg['output_options'].get('max-zoom', '+1')
        if max_zoom.startswith(('+', '-')):
            _max_zoom = max(tilesmap.res2zoom([traj_res, traj_res]))
            if max_zoom.startswith('-'):
                max_zoom = _max_zoom - int(max_zoom[1:])
            elif max_zoom.startswith('+'):
                max_zoom = _max_zoom + int(max_zoom[1:])
        else:
            max_zoom = int(max_zoom)
        if min_zoom.startswith(('+', '-')):
            widhei = [
                traj_gcps['gcpmidx'].max() - traj_gcps['gcpmidx'].min(),
                traj_gcps['gcpmidy'].max() - traj_gcps['gcpmidy'].min()
            ]
            _min_res = [widhei[i] / tilesmap.tile_size[i] for i in [0, 1]]
            _min_zoom = min(tilesmap.res2zoom(_min_res))
            if min_zoom.startswith('-'):
                min_zoom = _min_zoom - int(min_zoom[1:])
            elif min_zoom.startswith('+'):
                min_zoom = _min_zoom + int(min_zoom[1:])
        else:
            min_zoom = int(min_zoom)
        if min_zoom > max_zoom:
            max_zoom = min_zoom
        cfg['output_options']['min-zoom'] = str(min_zoom)
        cfg['output_options']['max-zoom'] = str(max_zoom)
        linewidth_meter = float(cfg['output_options'].get(
            'linewidth-meter', '5000'))
        min_linewidth_pixel = int(cfg['output_options'].get(
            'min-linewidth-pixel', '4'))
        resampling = cfg['output_options'].get('resampling', 'average')
        cfg['output_options']['linewidth-meter'] = str(linewidth_meter)
        cfg['output_options']['min-linewidth-pixel'] = str(min_linewidth_pixel)
        cfg['output_options']['resampling'] = resampling

        logger.info('[{}] End initialisation.'.format(datetime.datetime.now()))

        # Remove unwanted bands
        nb_bands = src_meta.get('nb_bands', 0)
        ispaletted = src_meta.get('ispaletted', False)
        if nb_bands == 2 and ispaletted:
            bands_ok_path = os.path.join(workspace, 'fix_bands.vrt')
            remove_bands(input_path, bands_ok_path, bands2keep=[1])
            temporary_files.append(bands_ok_path)
            src_meta['nb_bands'] = 1
            if 0 < len(src_meta['nodatavalues']):
                src_meta['nodatavalues'] = [src_meta['nodatavalues'][0]]
        else:
            bands_ok_path = input_path

        # Loop on zooms (average traj, modify traj GCPs, shape computation, warp, cut, tile)
        viewport = cfg['viewport'].split(' ')
        viewport_geom = ogr.CreateGeometryFromWkt(
            mtdt._get_bbox_wkt(*viewport))
        zooms_tilemap = {}
        zooms_transparency = {}
        ## NEW metadata.py
        ## Before
        # zooms_shape_geom = {}
        # zooms_shape_extent = {}
        ## Now
        zooms_meta = {}
        ## \NEW metadata.py
        for zoom in range(min_zoom, max_zoom + 1):

            logger.info('[{}] Start processing zoom {}.'.format(
                datetime.datetime.now(), zoom))

            zoom_res = tilesmap.zoom2res(zoom)

            # Average
            avrg_res = max(zoom_res)
            if resampling == 'average' and traj_res < avrg_res:
                avrg_ok_path = os.path.join(
                    workspace, 'fix_average_zoom{:02d}.tiff'.format(zoom))
                navrg = np.ceil(avrg_res / traj_res).astype('int')
                try:
                    logger.info('[{}] Start averaging.'.format(
                        datetime.datetime.now()))
                    average_trajectory(bands_ok_path, avrg_ok_path, navrg)
                    logger.info('[{}] End averaging.'.format(
                        datetime.datetime.now()))
                except:
                    logger.error('Could not average.')
                    raise
                temporary_files.append(avrg_ok_path)
            else:
                avrg_ok_path = bands_ok_path

            # Transform GCPs
            linewidth = [
                max([linewidth_meter, min_linewidth_pixel * r])
                for r in zoom_res
            ]
            gcps_ok_path = os.path.join(workspace,
                                        'fix_gcps_zoom{:02d}.vrt'.format(zoom))
            try:
                logger.info('[{}] Start modifying gcps.'.format(
                    datetime.datetime.now()))
                modify_trajectory_gcps(avrg_ok_path, gcps_ok_path, traj_gcps,
                                       linewidth)
                logger.info('[{}] End modifying gcps.'.format(
                    datetime.datetime.now()))
            except:
                logger.error('Could not modify gcps.')
                raise
            temporary_files.append(gcps_ok_path)

            # Compute shape geometry in the same way it is done in metadata.py
            # (we redo it at each zoom since GCPs are changed).
            logger.info('[{}] Start computing shape.'.format(
                datetime.datetime.now()))
            gcps_ok_dset = gdal.Open(gcps_ok_path)
            gcps_ok_tf = gdal.Transformer(gcps_ok_dset, None,
                                          ['MAX_GCP_ORDER=-1'])
            shape = get_trajectory_shape(gcps_ok_dset,
                                         transformer=gcps_ok_tf,
                                         ndist=330,
                                         min_shape_res=750000.,
                                         max_shape_points=33)
            srs4326 = osr.SpatialReference()
            srs4326.ImportFromEPSG(4326)
            proj_tf = osr.CoordinateTransformation(output_srs, srs4326)
            lonlat_shape = proj_tf.TransformPoints(shape)
            ## NEW metadata.py
            ## Before
            # shape_geom0 = mtdt._get_shape_geometry(lonlat_shape, gcps_ok_dset, input_proj, output_proj)
            # shape_geom, _, _ = mtdt._get_crop_info(shape_geom0, viewport_geom)
            # shape_extent = get_shape_extent(shape_geom, lonlat_shape)
            # zooms_shape_geom[zoom] = shape_geom
            # zooms_shape_extent[zoom] = shape_extent
            # center_long = None
            # if input_proj in mtdt.CYLINDRIC_PROJ and output_proj in mtdt.STEREO_PROJ:
            #     shape_lon = [lonlat[0] for lonlat in shape]
            #     minlon, maxlon = min(shape_lon), max(shape_lon)
            #     if (maxlon > 180 and minlon > -180) or (maxlon < 180 and minlon < -180):
            #         center_long = '{}'.format((maxlon + minlon) / 2.)
            #tiling_extent = tilesmap.tiling_extent(zoom, shape_extent)
            ## Now
            output_shape_geom, bbox_infos, warp_infos = mtdt._get_output_shape(
                lonlat_shape, gcps_ok_dset, input_proj, output_proj,
                viewport_geom)
            zooms_meta[zoom] = {}
            zooms_meta[zoom]['lonlat_shape'] = lonlat_shape
            zooms_meta[zoom]['output_shape_geom'] = output_shape_geom
            zooms_meta[zoom]['bbox_infos'] = bbox_infos
            zooms_meta[zoom]['warp_infos'] = warp_infos
            shape_extent = warp_infos['extent']
            tiling_extent = tilesmap.tiling_extent(zoom, shape_extent)
            ## \NEW metadata.py
            logger.info('[{}] End computing shape.'.format(
                datetime.datetime.now()))

            # TMP : Check GDAL transformer
            # print linewidth
            # gdaltf = gdal.Transformer(gcps_ok_dset, None, ['MAX_GCP_ORDER=-1'])
            # gridx = np.linspace(tiling_extent[0], tiling_extent[2], num=800)
            # gridy = np.linspace(tiling_extent[1], tiling_extent[3], num=800)
            # gridxy = np.array((np.tile(gridx[:, np.newaxis], (1, gridy.size)),
            #                    np.tile(gridy[np.newaxis, :], (gridx.size, 1))))
            # dimsxy = gridxy.shape[1:3]
            # gridxy = gridxy.reshape((2, -1)).transpose()
            # pixlin = np.array(gdaltf.TransformPoints(1, gridxy)[0])
            # pix = pixlin[:, 0].reshape(dimsxy).transpose()
            # lin = pixlin[:, 1].reshape(dimsxy).transpose()
            # gcps = gcps_ok_dset.GetGCPs()
            # gcpx = np.array([gcp.GCPX for gcp in gcps])
            # gcpy = np.array([gcp.GCPY for gcp in gcps])
            # import matplotlib.pyplot as plt
            # plt.figure()
            # plt.imshow(pix, origin='lower', interpolation='nearest',
            #            extent=[gridx.min(), gridx.max(), gridy.min(), gridy.max()])
            # plt.colorbar(label='pixel') ; plt.xlabel('x') ; plt.ylabel('y')
            # plt.plot(gcpx, gcpy, 'k+')
            # plt.xlim((gridx.min(), gridx.max())) ; plt.ylim((gridy.min(), gridy.max()))
            # plt.figure()
            # plt.imshow(lin, origin='lower', interpolation='nearest',
            #            extent=[gridx.min(), gridx.max(), gridy.min(), gridy.max()])
            # plt.colorbar(label='line') ; plt.xlabel('x') ; plt.ylabel('y')
            # plt.plot(gcpx, gcpy, 'k+')
            # plt.xlim((gridx.min(), gridx.max())) ; plt.ylim((gridy.min(), gridy.max()))
            # plt.show()
            # \TMP

            # Estimate the tiles to be generated
            logger.info('[{}] Start estimating tiles.'.format(
                datetime.datetime.now()))
            traj_bboxes = get_trajectory_bboxes(gcps_ok_dset,
                                                nbbox=128,
                                                max_extent=tiling_extent,
                                                transformer=gcps_ok_tf)
            zoom_tiles = []
            for bbox in traj_bboxes:
                zoom_tiles.extend(tilesmap.bbox2tiles(zoom, bbox))
            tiles_list = {zoom: list(set(zoom_tiles))}
            logger.info('[{}] End estimating tiles.'.format(
                datetime.datetime.now()))

            # Warp
            warp_res = zoom_res
            warp_extent = tiling_extent
            if resampling == 'average':
                _resampling = 'near'
            else:
                _resampling = resampling
            isrgb = src_meta.get('isrgb', False)
            if 0 < len(src_meta['nodatavalues']) and not isrgb:
                dstnodata = src_meta['nodatavalues']
                dstalpha = False
            else:
                dstnodata = None
                dstalpha = True
            tps = src_meta.get('use_gcp', False)
            warp_ok_path = os.path.join(workspace,
                                        'warp_zoom{:02d}.vrt'.format(zoom))
            warp(gcps_ok_path, output_srs, warp_ok_path, output_srs, warp_res,
                 warp_extent, _resampling, dstnodata, dstalpha, tps)
            temporary_files.append(warp_ok_path)

            # Cut
            ## NEW metadata.py
            ## Before
            # shape_geom_type = shape_geom.GetGeometryType()
            # if shape_geom_type != ogr.wkbGeometryCollection and \
            #    (any(tiling_extent[i] < float(viewport[i]) for i in [0, 1]) or \
            #     any(tiling_extent[i] > float(viewport[i]) for i in [2, 3])):
            ## Now
            if cfg['output_proj_type'] != 'cylindric' and \
               (any(tiling_extent[i] < float(viewport[i]) for i in [0, 1]) or \
                any(tiling_extent[i] > float(viewport[i]) for i in [2, 3])):
                ## \NEW metadata.py
                # Make cutline
                cut_extent = viewport
                cutline_path = os.path.join(
                    workspace, 'cutline_zoom{:02d}.csv'.format(zoom))
                write_cutline(cutline_path, cut_extent)
                temporary_files.append(cutline_path)
                # Do cut
                dstnodata = src_meta.get('nodatavalues', None)
                cut_ok_path = os.path.join(workspace,
                                           'cut_zoom{:02d}.vrt'.format(zoom))
                cut(warp_ok_path,
                    cut_ok_path,
                    cutline_path,
                    dstnodata=dstnodata)
                temporary_files.append(cut_ok_path)
            else:
                cut_ok_path = warp_ok_path

            # Tile
            srcnodata = src_meta.get('nodatavalues', None)
            paletted = src_meta.get('isrgb', False)
            ## NEW metadata.py
            center_long = warp_infos['center_long']
            ## \NEW metadata.py
            debug = cfg['debug']
            tiles_list_path = os.path.join(
                workspace, 'tiles_list_zoom{:02d}.json'.format(zoom))
            with open(tiles_list_path, 'w') as tl_file:
                json.dump(tiles_list, tl_file)
            temporary_files.append(tiles_list_path)
            tiles_ok_path = tile(cut_ok_path,
                                 workspace,
                                 output_proj,
                                 map_extent,
                                 zoom,
                                 zoom,
                                 srcnodata=srcnodata,
                                 paletted=paletted,
                                 center_long=center_long,
                                 debug=debug,
                                 tiles_list=tiles_list_path)

            # Move tiles and read tilemap.json / transparency.json
            tiles_dir = os.path.join(workspace, 'tiles.zxy')
            if zoom == min_zoom:
                if os.path.isdir(tiles_dir):
                    shutil.rmtree(tiles_dir)
                os.mkdir(tiles_dir)
            os.rename(os.path.join(tiles_ok_path, '{}'.format(zoom)),
                      os.path.join(tiles_dir, '{}'.format(zoom)))
            with open(os.path.join(tiles_ok_path,
                                   'tilemap.json')) as tile_file:
                zooms_tilemap[zoom] = json.load(tile_file)
            with open(os.path.join(tiles_ok_path,
                                   'transparency.json')) as transp_file:
                zooms_transparency[zoom] = json.load(transp_file)
            shutil.rmtree(tiles_ok_path)

            logger.info('[{}] End processing zoom {}.'.format(
                datetime.datetime.now(), zoom))

        # Clean temporary files
        if not cfg.get('keep_intermediary_files', False):
            to_remove = filter(lambda x: x != input_path and os.path.exists(x),
                               temporary_files)
            map(os.remove, list(set(to_remove)))
            logger.debug('These temporary files have been removed: {}'.format(
                to_remove))

        ## NEW metadata.py
        ## Before
        # Set bbox and shape with min zoom
        # ref_zoom = min_zoom
        # bbox = zooms_shape_extent[ref_zoom]
        # bbox_str = "POLYGON(({b[0]:f} {b[3]:f},{b[2]:f} {b[3]:f},{b[2]:f} {b[1]:f},"\
        #            "{b[0]:f} {b[1]:f},{b[0]:f} {b[3]:f}))".format(b=bbox)
        # shape_geom = zooms_shape_geom[ref_zoom]
        # shape_wkt = shape_geom.ExportToWkt().replace('POLYGON (', 'POLYGON(')
        # if not cfg['no_shape']:
        #     src_meta['shape_str'] = shape_wkt
        # src_meta['real_shape_str'] = shape_wkt
        ## Now
        # Update src_meta and set bbox_str
        # We use min zoom as the reference
        ref_zoom = min_zoom
        real_shape_wkt = zooms_meta[ref_zoom]['output_shape_geom'].ExportToWkt(
        )
        real_shape_wkt = real_shape_wkt.replace('POLYGON (', 'POLYGON(')
        if cfg['no_shape']:
            shape_wkt = 'POINT(0 0)'
        else:
            shape_wkt = real_shape_wkt
        src_meta['lonlat_shape'] = zooms_meta[ref_zoom]['lonlat_shape']
        src_meta['real_shape_str'] = real_shape_wkt
        src_meta['shape_str'] = shape_wkt
        src_meta['bbox_infos'] = zooms_meta[ref_zoom]['bbox_infos']
        src_meta['warp_infos'] = zooms_meta[ref_zoom]['warp_infos']
        bbox = zooms_meta[ref_zoom]['bbox_infos']['bbox']
        bbox_str = "POLYGON(({b[0]:f} {b[3]:f},{b[2]:f} {b[3]:f},{b[2]:f} {b[1]:f},"\
                   "{b[0]:f} {b[1]:f},{b[0]:f} {b[3]:f}))".format(b=bbox)
        ## \NEW metadata.py

        # Reconstruct tilemap.json / transparency.json
        tilemap_dict = zooms_tilemap[ref_zoom]
        ## NEW metadata.py
        ## Before
        #tilemap_dict['bbox'] = bbox
        ## Now
        # do nothing: why modify bbox in tilemap.json if we don't do it for raster tiles ?
        ## \NEW metadata.py
        for z, d in zooms_tilemap.iteritems():
            if z != ref_zoom:
                tilemap_dict['tilesets'].update(d['tilesets'])
        with open(os.path.join(tiles_dir, 'tilemap.json'), 'w') as tile_file:
            json.dump(tilemap_dict, tile_file, indent=2)
        transparency_dict = zooms_transparency[ref_zoom]
        for z, d in zooms_transparency.iteritems():
            if z != ref_zoom:
                transparency_dict.update(d)
        with open(os.path.join(tiles_dir, 'transparency.json'),
                  'w') as transp_file:
            json.dump(transparency_dict, transp_file, indent=0)

        tiles_mask = create_tiles_mask(tiles_dir)
        logger.debug('Tiles mask: {}'.format(tiles_mask))
        resolutions = []
        for zoom, tileset in tilemap_dict['tilesets'].iteritems():
            resolutions.append('{}:{}'.format(zoom,
                                              tileset['units_per_pixel']))
        zooms = map(int, tilemap_dict['tilesets'].keys())
        resolutions.append('9998:{}*{}'.format(max(3, min(zooms)), max(zooms)))
        resolutions.append('9999:{}'.format(tiles_mask))

        extra_meta = {
            'resolutions': resolutions,
            'min_zoom_level': min(zooms),
            'max_zoom_level': max(zooms),
            'bbox_str': bbox_str,
            'output_path': os.path.abspath(tiles_dir)
        }

        # Workaround for cross-IDL
        ## NEW metadata.py
        ## Before
        # shape_geom = ogr.CreateGeometryFromWkt(src_meta['shape_str'])
        # if ogr.wkbGeometryCollection == shape_geom.GetGeometryType() and \
        #    2 == shape_geom.GetGeometryCount():
        #     l0, r0, b0, t0 = shape_geom.GetGeometryRef(0).GetEnvelope() # West
        #     l1, r1, b1, t1 = shape_geom.GetGeometryRef(1).GetEnvelope() # East

        #     if l0 + r0 > l1 + r1:
        #         # Switch coordinates so that
        #         # l0, r0, t0, b0 are the coordinates of the western shape
        #         # l1, r1, t1, b1 are the coordinates of the eastern shape
        #         l0, r0, t0, b0, l1, r1, t1, b1 = l1, r1, t1, b1, l0, r0, t0, b0

        #     logger.debug('Checking XIDL...')
        #     logger.debug('{} {} {} {} vs {} {} {} {}'.format(l0, r0, b0, t0,
        #                                                      l1, r1, b1, t1))

        #     if XIDL_FIX_LON_DELTA + r0 < l1:
        #         bbox_pattern = 'POLYGON(({} {}, {} {}, {} {}, {} {}, {} {}))'
        #         extra_meta['w_bbox'] = bbox_pattern.format(l0, t0, r0, t0,
        #                                                    r0, b0, l0, b0,
        #                                                    l0, t0)
        #         extra_meta['e_bbox'] = bbox_pattern.format(l1, t1, r1, t1,
        #                                                    r1, b1, l1, b1,
        #                                                    l1, t1)
        ## Now
        if zooms_meta[ref_zoom]['bbox_infos']['xIDL'] == True:
            # bboxes contain [xmin, ymin, xmax, ymax]
            bbox_pattern = 'POLYGON(({} {}, {} {}, {} {}, {} {}, {} {}))'
            l0, b0, r0, t0 = zooms_meta[ref_zoom]['bbox_infos']['w_bbox']
            extra_meta['w_bbox'] = bbox_pattern.format(l0, t0, r0, t0, r0, b0,
                                                       l0, b0, l0, t0)
            l1, b1, r1, t1 = zooms_meta[ref_zoom]['bbox_infos']['e_bbox']
            extra_meta['e_bbox'] = bbox_pattern.format(l1, t1, r1, t1, r1, b1,
                                                       l1, b1, l1, t1)
        ## \NEW metadata.py
        return extra_meta
Ejemplo n.º 12
0
    def saveTiff(self, drappingMain):

        rasterPath = QFileDialog.getSaveFileName(drappingMain,
                                                 "save file dialog",
                                                 "/ortho.tiff",
                                                 "Images (*.tiff)")[0]

        maskedOrtho = self.ortho
        pointRaster = self.pointRaster
        im = self.image

        if rasterPath:

            cols = pointRaster.RasterXSize
            rows = pointRaster.RasterYSize

            geoTrans = pointRaster.GetGeoTransform()
            geoTrans = list(geoTrans)
            x_min = geoTrans[0]
            pixelWidth = geoTrans[1]
            y_min = geoTrans[3]
            pixelHeight = geoTrans[5]

            nDim = np.ndim(im)
            if nDim == 3:
                nBand = im.shape[2]

                driver = gdal.GetDriverByName('GTiff')
                outRaster = driver.Create(rasterPath, cols, rows, nBand,
                                          gdal.GDT_UInt16)
                outRaster.SetGeoTransform(
                    (x_min, pixelWidth, 0, y_min, 0, pixelHeight))

                for i in range(nBand):
                    outband = outRaster.GetRasterBand(i + 1)
                    outband.WriteArray(np.uint16(maskedOrtho[:, :, i]))
                    outband.FlushCache()
                outRasterSRS = osr.SpatialReference()
                outRasterSRS.ImportFromEPSG(self.epsg)
                outRaster.SetProjection(outRasterSRS.ExportToWkt())
                outRaster = None

#            driver = gdal.GetDriverByName('GTiff')
#            outRaster = driver.Create(rasterSaveName, cols, rows, 1, gdal.GDT_UInt16)
#            outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight))
#            outband = outRaster.GetRasterBand(1)
#            outband.WriteArray(boolMat)
#            outRasterSRS = osr.SpatialReference()
#            outRasterSRS.ImportFromEPSG(self.crs.srsid ())#2056)
#            outRaster.SetProjection(outRasterSRS.ExportToWkt())

            else:
                driver = gdal.GetDriverByName('GTiff')
                outRaster = driver.Create(rasterPath, cols, rows, 1,
                                          gdal.GDT_UInt16)
                outRaster.SetGeoTransform(
                    (x_min, pixelWidth, 0, y_min, 0, pixelHeight))
                outband = outRaster.GetRasterBand(1)
                outband.WriteArray(np.uint16(maskedOrtho))
                outRasterSRS = osr.SpatialReference()
                outRasterSRS.ImportFromEPSG(self.epsg)
                outRaster.SetProjection(outRasterSRS.ExportToWkt())
                outband.FlushCache()
                outRaster = None
Ejemplo n.º 13
0
    def generatePointRasterLayer(self):

        imXLine = self.XLine
        imYLine = self.YLine
        ortho = self.ortho
        Xmin = self.minX
        Ymin = self.minY
        Xmax = self.maxX
        Ymax = self.maxY

        resol = self.resol

        # Save extent to a new Shapefile
        pointDriver = ogr.GetDriverByName("MEMORY")
        pointDataSource = pointDriver.CreateDataSource('memData')

        #open the memory datasource with write access
        #tmp=pointDriver.Open('memData',1)

        self.epsg = int(self.crs.authid().split(':')[1])

        pointLayerSRS = osr.SpatialReference()
        pointLayerSRS.ImportFromEPSG(self.epsg)

        pointLayer = pointDataSource.CreateLayer("Points",
                                                 pointLayerSRS,
                                                 geom_type=ogr.wkbPoint)

        #pointLayer.SetProjection(pointLayerSRS.ExportToWkt())

        # Add an ID field
        idField = ogr.FieldDefn("id", ogr.OFTInteger)
        pointLayer.CreateField(idField)

        # Create the feature and set values
        featureDefn = pointLayer.GetLayerDefn()
        feature = ogr.Feature(featureDefn)

        # Fill the layer with points
        for i in range(imXLine.shape[0]):

            points = ogr.Geometry(ogr.wkbPoint)
            points.AddPoint(float(imXLine[i]), float(imYLine[i]))

            feature.SetGeometry(points)
            feature.SetField("id", 1)
            pointLayer.CreateFeature(feature)

        # Close DataSource
        #outDataSource.Destroy()

        #Generate rasterized point layer
        #-------------------------------
        cols = ortho.shape[0]
        rows = ortho.shape[1]

        originX = Xmin
        originY = Ymax

        pixelWidth = resol
        pixelHeight = resol

        driver = gdal.GetDriverByName('MEM')
        pointRaster = driver.Create('memory', cols, rows, 1, gdal.GDT_UInt16)
        pointRaster.SetGeoTransform(
            (originX, pixelWidth, 0, originY, 0, -pixelHeight))

        #pointBand = pointRaster.GetRasterBand(1)
        #outband.WriteArray(boolMat)

        pointRasterSRS = osr.SpatialReference()
        pointRasterSRS.ImportFromEPSG(self.epsg)

        pointRaster.SetProjection(pointRasterSRS.ExportToWkt())

        #pointBand.FlushCache()

        #Fill layer
        #----------
        gdal.RasterizeLayer(pointRaster, [1], pointLayer)  #, outLayer)

        #pointBand = pointRaster.GetRasterBand(1)
        #array = pointBand.ReadAsArray()

        #plt.imshow(array)
        #plt.show()

        self.pointRaster = pointRaster
geotransform[2] = X pixel rotation
geotransform[3] = North/South location of Upper Left corner
geotransform[4] = Y pixel rotation
geotransform[5] = Y pixel size

Xgeo = gt(0) + Xpixel*gt(1) + Yline*gt(2)
Ygeo = gt(3) + Xpixel*gt(4) + Yline*gt(5)
"""

print gt

# <demo> --- stop ---

#Projection change for a point:

proj_out = osr.SpatialReference()
proj_out.ImportFromEPSG(4326)

#proj_in is a String, so it must be converted to a SpatialReference object:
proj_in = osr.SpatialReference(proj_in)

transf = osr.CoordinateTransformation(proj_in, proj_out)

punto = transf.TransformPoint(gt[0], gt[3])

print punto

# <demo> --- stop ---
#using the geotransform functions
#Pixel to coordinates:
gt = (1,1,0,1,0,1)
Ejemplo n.º 15
0
    def save_footprints(self, map_name):
        if self._products_df_sorted is None:
            return
        if self._apiname == 'USGS_EE':
            gs.fatal(_(
                "USGS Earth Explorer does not support footprint download."))
        try:
            from osgeo import ogr, osr
        except ImportError as e:
            gs.fatal(_("Option <footprints> requires GDAL library: {}").format(e))

        gs.message(_("Writing footprints into <{}>...").format(map_name))
        driver = ogr.GetDriverByName("GPKG")
        tmp_name = gs.tempfile() + '.gpkg'
        data_source = driver.CreateDataSource(tmp_name)

        srs = osr.SpatialReference()
        srs.ImportFromEPSG(4326)

        # features can be polygons or multi-polygons
        layer = data_source.CreateLayer(str(map_name), srs, ogr.wkbMultiPolygon)

        # attributes
        attrs = OrderedDict([
            ("uuid", ogr.OFTString),
            ("ingestiondate", ogr.OFTString),
            ("cloudcoverpercentage", ogr.OFTInteger),
            ("producttype", ogr.OFTString),
            ("identifier", ogr.OFTString)
        ])

        # Sentinel-1 data does not have cloudcoverpercentage
        prod_types = [type for type in self._products_df_sorted["producttype"]]
        s1_types = ["SLC", "GRD"]
        if any(type in prod_types for type in s1_types):
            del attrs["cloudcoverpercentage"]

        for key in attrs.keys():
            field = ogr.FieldDefn(key, attrs[key])
            layer.CreateField(field)

        # features
        for idx in range(len(self._products_df_sorted['uuid'])):
            wkt = self._products_df_sorted['footprint'][idx]
            feature = ogr.Feature(layer.GetLayerDefn())
            newgeom = ogr.CreateGeometryFromWkt(wkt)
            # convert polygons to multi-polygons
            newgeomtype = ogr.GT_Flatten(newgeom.GetGeometryType())
            if newgeomtype == ogr.wkbPolygon:
                multigeom = ogr.Geometry(ogr.wkbMultiPolygon)
                multigeom.AddGeometryDirectly(newgeom)
                feature.SetGeometry(multigeom)
            else:
                feature.SetGeometry(newgeom)
            for key in attrs.keys():
                if key == 'ingestiondate':
                    value = self._products_df_sorted[key][idx].strftime("%Y-%m-%dT%H:%M:%SZ")
                else:
                    value = self._products_df_sorted[key][idx]
                feature.SetField(key, value)
            layer.CreateFeature(feature)
            feature = None

        data_source = None

        # coordinates of footprints are in WKT -> fp precision issues
        # -> snap
        gs.run_command('v.import', input=tmp_name, output=map_name,
                       layer=map_name, snap=1e-10, quiet=True
                       )
Ejemplo n.º 16
0
def test_osr_epsg_11():

    srs = osr.SpatialReference()
    srs.ImportFromEPSG(2065)
Ejemplo n.º 17
0
def get_wkt_from_epsg_code(epsg_code):
    srs = osr.SpatialReference()
    srs.ImportFromEPSG(int(epsg_code))
    wkt = srs.ExportToWkt()

    return wkt
Ejemplo n.º 18
0
def test_osr_epsg_13():

    # One exact match
    sr = osr.SpatialReference()
    sr.SetFromUserInput("""PROJCS["ETRS89 / UTM zone 32N (N-E)",
    GEOGCS["ETRS89",
        DATUM["European_Terrestrial_Reference_System_1989",
            SPHEROID["GRS 1980",6378137,298.257222101,
                AUTHORITY["EPSG","7019"]],
            TOWGS84[0,0,0,0,0,0,0],
            AUTHORITY["EPSG","6258"]],
        PRIMEM["Greenwich",0,
            AUTHORITY["EPSG","8901"]],
        UNIT["degree",0.0174532925199433,
            AUTHORITY["EPSG","9122"]],
        AUTHORITY["EPSG","4258"]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",9],
    PARAMETER["scale_factor",0.9996],
    PARAMETER["false_easting",500000],
    PARAMETER["false_northing",0],
    UNIT["metre",1,
        AUTHORITY["EPSG","9001"]],
    AXIS["Northing",NORTH],
    AXIS["Easting",EAST]]""")
    matches = sr.FindMatches()
    assert len(matches) == 1 and matches[0][1] == 100
    assert matches[0][0].IsSame(sr)

    # Another one
    sr = osr.SpatialReference()
    sr.ImportFromEPSG(3044)
    sr.MorphToESRI()
    sr.SetFromUserInput(sr.ExportToWkt())
    matches = sr.FindMatches()
    assert len(matches) == 1 and matches[0][1] == 100
    assert not matches[0][0].IsSame(sr)

    # Two matches (and test GEOGCS)
    # This will now match with 4126 (which is deprecated), since the datum
    # is identified to 6126 and GetEPSGGeogCS has logic to subtract 2000 to it.
    #sr.SetFromUserInput("""GEOGCS["myLKS94",
    #DATUM["Lithuania_1994_ETRS89",
    #    SPHEROID["GRS 1980",6378137,298.257222101],
    #    TOWGS84[0,0,0,0,0,0,0]],
    #PRIMEM["Greenwich",0],
    #UNIT["degree",0.0174532925199433]]""")
    #matches = sr.FindMatches()
    #if len(matches) != 2:
    #    gdaltest.post_reason('fail')
    #    print(matches)
    #    return 'fail'
    #if matches[0][0].GetAuthorityCode(None) != '4126' or matches[0][1] != 90:
    #    gdaltest.post_reason('fail')
    #    print(matches)
    #    return 'fail'
    #if matches[1][0].GetAuthorityCode(None) != '4669' or matches[1][1] != 90:
    #    gdaltest.post_reason('fail')
    #    print(matches)
    #    return 'fail'

    # Very approximate matches
    sr.SetFromUserInput("""GEOGCS["myGEOGCS",
    DATUM["my_datum",
        SPHEROID["WGS 84",6378137,298.257223563]],
    PRIMEM["Greenwich",0],
    UNIT["degree",0.0174532925199433]]
""")
    matches = sr.FindMatches()
    assert matches

    # One single match, but not similar according to IsSame()
    sr = osr.SpatialReference()
    sr.SetFromUserInput("""PROJCS["WGS 84 / UTM zone 32N",
    GEOGCS["WGS 84",
        DATUM["WGS_1984",
            SPHEROID["WGS 84",6378137,298.257223563,
                AUTHORITY["EPSG","7030"]],
            AUTHORITY["EPSG","6326"]],
        PRIMEM["Greenwich",0,
            AUTHORITY["EPSG","8901"]],
        UNIT["degree",0.0174532925199433,
            AUTHORITY["EPSG","9122"]],
        AUTHORITY["EPSG","4326"]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",9],
    PARAMETER["scale_factor",0.9996],
    PARAMETER["false_easting",999999999],
    PARAMETER["false_northing",0],
    UNIT["metre",1,
        AUTHORITY["EPSG","9001"]]]
""")
    matches = sr.FindMatches()
    assert len(matches) == 1 and matches[0][1] == 25
    assert matches[0][0].IsSame(sr) != 1

    # WKT has EPSG code but the definition doesn't match with the official
    # one (namely linear units are different)
    # https://github.com/OSGeo/gdal/issues/990
    sr = osr.SpatialReference()
    sr.SetFromUserInput("""PROJCS["NAD83 / Ohio North",
    GEOGCS["NAD83",
        DATUM["North_American_Datum_1983",
            SPHEROID["GRS 1980",6378137,298.257222101,
                AUTHORITY["EPSG","7019"]],
            TOWGS84[0,0,0,0,0,0,0],
            AUTHORITY["EPSG","6269"]],
        PRIMEM["Greenwich",0,
            AUTHORITY["EPSG","8901"]],
        UNIT["degree",0.0174532925199433,
            AUTHORITY["EPSG","9122"]],
        AUTHORITY["EPSG","4269"]],
    PROJECTION["Lambert_Conformal_Conic_2SP"],
    PARAMETER["standard_parallel_1",41.7],
    PARAMETER["standard_parallel_2",40.43333333333333],
    PARAMETER["latitude_of_origin",39.66666666666666],
    PARAMETER["central_meridian",-82.5],
    PARAMETER["false_easting",1968503.937007874],
    PARAMETER["false_northing",0],
    UNIT["International Foot",0.3048,
        AUTHORITY["EPSG","9002"]],
    AXIS["X",EAST],
    AXIS["Y",NORTH],
    AUTHORITY["EPSG","32122"]]
""")
    matches = sr.FindMatches()
    assert len(matches) == 1 and matches[0][1] == 25
    assert matches[0][0].IsSame(sr) != 1
Ejemplo n.º 19
0
def resize_and_resample_dataset_uri_hb_old(
        original_dataset_uri, bounding_box, out_pixel_size, output_uri,
        resample_method):
    """Resize and resample the given dataset.

    Args:
        original_dataset_uri (string): a GDAL dataset
        bounding_box (list): [upper_left_x, upper_left_y, lower_right_x,
            lower_right_y]
        out_pixel_size: the pixel size in projected linear units
        output_uri (string): the location of the new resampled GDAL dataset
        resample_method (string): the resampling technique, one of
            "nearest|bilinear|cubic|cubic_spline|lanczos"

    Returns:
        None
    """
    resample_dict = {
        "nearest": gdal.GRA_NearestNeighbour,
        "nearest_neighbor": gdal.GRA_NearestNeighbour,
        "bilinear": gdal.GRA_Bilinear,
        "cubic": gdal.GRA_Cubic,
        "cubic_spline": gdal.GRA_CubicSpline,
        "lanczos": gdal.GRA_Lanczos,
        "average": gdal.GRA_Average,
    }

    original_dataset = gdal.Open(original_dataset_uri)
    original_band = original_dataset.GetRasterBand(1)
    original_nodata = original_band.GetNoDataValue()

    if original_nodata is None:
        original_nodata = -9999

    original_sr = osr.SpatialReference()
    original_sr.ImportFromWkt(original_dataset.GetProjection())

    output_geo_transform = [
        bounding_box[0], out_pixel_size, 0.0, bounding_box[1], 0.0,
        -out_pixel_size]
    new_x_size = abs(
        int(np.round((bounding_box[2] - bounding_box[0]) / out_pixel_size)))
    new_y_size = abs(
        int(np.round((bounding_box[3] - bounding_box[1]) / out_pixel_size)))

    if new_x_size == 0:
        print (
            "bounding_box is so small that x dimension rounds to 0; "
            "clamping to 1.")
        new_x_size = 1
    if new_y_size == 0:
        print (
            "bounding_box is so small that y dimension rounds to 0; "
            "clamping to 1.")
        new_y_size = 1

    # create the new x and y size
    block_size = original_band.GetBlockSize()
    # If the original band is tiled, then its x blocksize will be different
    # than the number of columns
    if original_band.XSize > 256 and original_band.YSize > 256:
        # it makes sense for many functions to have 256x256 blocks
        block_size[0] = 256
        block_size[1] = 256
        gtiff_creation_options = [
            'TILED=YES', 'BIGTIFF=IF_SAFER', 'BLOCKXSIZE=%d' % block_size[0],
                                             'BLOCKYSIZE=%d' % block_size[1]]

        metadata = original_band.GetMetadata('IMAGE_STRUCTURE')
        if 'PIXELTYPE' in metadata:
            gtiff_creation_options.append('PIXELTYPE=' + metadata['PIXELTYPE'])
    else:
        # it is so small or strangely aligned, use the default creation options
        gtiff_creation_options = []

    hb.create_directories([os.path.dirname(output_uri)])
    gdal_driver = gdal.GetDriverByName('GTiff')
    output_dataset = gdal_driver.Create(
        output_uri, new_x_size, new_y_size, 1, original_band.DataType,
        options=gtiff_creation_options)
    output_band = output_dataset.GetRasterBand(1)

    output_band.SetNoDataValue(original_nodata)

    # Set the geotransform
    output_dataset.SetGeoTransform(output_geo_transform)
    output_dataset.SetProjection(original_sr.ExportToWkt())

    # need to make this a closure so we get the current time and we can affect
    # state
    def reproject_callback(df_complete, psz_message, p_progress_arg):
        """The argument names come from the GDAL API for callbacks."""
        try:
            current_time = time.time()
            if ((current_time - reproject_callback.last_time) > 5.0 or
                    (df_complete == 1.0 and reproject_callback.total_time >= 5.0)):
                print (
                    "ReprojectImage %.1f%% complete %s, psz_message %s",
                    df_complete * 100, p_progress_arg[0], psz_message)
                reproject_callback.last_time = current_time
                reproject_callback.total_time += current_time
        except AttributeError:
            reproject_callback.last_time = time.time()
            reproject_callback.total_time = 0.0

    # Perform the projection/resampling
    gdal.ReprojectImage(
        original_dataset, output_dataset, original_sr.ExportToWkt(),
        original_sr.ExportToWkt(), resample_dict[resample_method], 0, 0,
        reproject_callback, [output_uri])

    # Make sure the dataset is closed and cleaned up
    original_band = None
    gdal.Dataset.__swig_destroy__(original_dataset)
    original_dataset = None

    output_dataset.FlushCache()
    gdal.Dataset.__swig_destroy__(output_dataset)
    output_dataset = None
    hb.calculate_raster_stats_uri(output_uri)
Ejemplo n.º 20
0
def test_osr_epsg_gcs_deprecated():

    sr = osr.SpatialReference()
    with gdaltest.config_option('OSR_USE_NON_DEPRECATED', 'NO'):
        sr.ImportFromEPSG(4268)
    assert sr.ExportToWkt().find('NAD27 Michigan (deprecated)') >= 0
Ejemplo n.º 21
0
def get_projection(srs_wkt) -> str:
    srs = osr.SpatialReference()
    srs.ImportFromWkt(srs_wkt)
    return srs.GetAttrValue('projcs')
Ejemplo n.º 22
0
def test_osr_epsg_geoccs_deprecated():

    sr = osr.SpatialReference()
    with gdaltest.config_option('OSR_USE_NON_DEPRECATED', 'NO'):
        sr.ImportFromEPSG(4346)
    assert sr.ExportToWkt().find('ETRS89 (geocentric) (deprecated)') >= 0
Ejemplo n.º 23
0
    def __init__(self, input_file, band=1):
        gdal.AllRegister()
        self.data_set = gdal.Open(input_file)
        if self.data_set == None:
            raise Exception("Could not open file: %s", input_file)

        # Get the transformation from projection to pixel coordinates

        self.geotransform = self.data_set.GetGeoTransform()
        self.originX = self.geotransform[0]
        self.originY = self.geotransform[3]
        self.pixel_width = self.geotransform[1]
        self.pixel_height = self.geotransform[5]

        self.bands = self.data_set.RasterCount
        self.xsize = self.data_set.RasterXSize
        self.ysize = self.data_set.RasterYSize
        self.band_type = self.data_set.GetRasterBand(1).DataType

        # Get corner locations in native coordinates

        self.ulx = self.geotransform[0]
        self.uly = self.geotransform[3]
        self.lrx = self.ulx + self.geotransform[1] * self.xsize
        self.lry = self.uly + self.geotransform[5] * self.ysize

        self.llx = self.ulx
        self.lly = self.lry
        self.urx = self.lrx
        self.ury = self.uly

        self.centerx = 0.5 * (self.ulx + self.lrx)
        self.centery = 0.5 * (self.uly + self.lry)

        # Get the projection and the Proj projection

        self.wkt_proj = self.data_set.GetProjection()
        self.spatial_reference = osr.SpatialReference(wkt=self.wkt_proj)
        self.proj4_proj = self.spatial_reference.ExportToProj4()
        self.dataset_proj = Proj(
            self.proj4_proj)  # Projection with this data set

        # This takes you to lon/lat

        destination_projection = '+units=m +ellps=WGS84 +datum=WGS84 +proj=longlat '
        self.destination_projection = Proj(destination_projection)

        # Get the lat/lon corners

        self.ullon, self.ullat = transform(self.dataset_proj,
                                           self.destination_projection,
                                           self.ulx, self.uly)
        self.lrlon, self.lrlat = transform(self.dataset_proj,
                                           self.destination_projection,
                                           self.lrx, self.lry)
        self.lllon, self.lllat = transform(self.dataset_proj,
                                           self.destination_projection,
                                           self.llx, self.lly)
        self.urlon, self.urlat = transform(self.dataset_proj,
                                           self.destination_projection,
                                           self.urx, self.ury)
        self.centerlon, self.centerlat = transform(self.dataset_proj,
                                                   self.destination_projection,
                                                   self.centerx, self.centery)

        # Get the lat/lon bounding box

        self.lonmin = min(self.ullon, self.lrlon, self.lllon, self.urlon)
        self.lonmax = max(self.ullon, self.lrlon, self.lllon, self.urlon)
        self.latmin = min(self.ullat, self.lrlat, self.lllat, self.urlat)
        self.latmax = max(self.ullat, self.lrlat, self.lllat, self.urlat)

        # Get the shapely polygons

        self.lonlat_bbox = Polygon([
            (self.lonmin, self.latmin),
            (self.lonmax, self.latmin),
            (self.lonmax, self.latmax),
            (self.lonmin, self.latmax),
        ])

        self.lonlat_poly = Polygon([
            (self.ullon, self.ullat),
            (self.lllon, self.lllat),
            (self.lrlon, self.lrlat),
            (self.urlon, self.urlat),
        ])

        self.xy_poly = Polygon([
            (self.ulx, self.uly),
            (self.llx, self.lly),
            (self.lrx, self.lry),
            (self.urx, self.ury),
        ])

        # Get the band nodata value

        self.band = self.data_set.GetRasterBand(band)
        self.nodata_value = self.band.GetNoDataValue()

        # Close the data set and band

        self.band = None
        self.data_set = None
Ejemplo n.º 24
0
def test_osr_epsg_1():

    srs = osr.SpatialReference()
    srs.ImportFromEPSG(26591)
    assert srs.GetAuthorityCode(None) == '3003'
Ejemplo n.º 25
0
def h5togeotiff(hdf_files,geotiff_target,dataset_name ="dataset1/data1",data_type="float",expiration_time=None):
    """
    Converts BALTRAD hdf5 file to Mapserver compliant GeoTiff file. 
    Reprojection of data is included.

    Parameters:
    * hdf5_source: Source HDF5 file path, if list then sum results
    * geotiff_target: Target GeoTIFF file path
    * target_projection: EPSG code string or set to None for no projection
    * dataset_name: change this if other information is wanted 
    * data_type: data type for target file: float or int
    * expiration_time: if defined (datetype.datetype) skip conversion if necessary
    """
    if not isinstance(hdf_files, (list, tuple)):
        hdf_files = [hdf_files]
    first_iteration = True
    for hdf5_source in hdf_files:
        # read h5 file
        f = h5py.File(hdf5_source,'r') # read only
        where = f["where"] # coordinate variables
        what = f["what"] # data

        # read time from h5 file
        date_string = what.attrs["date"][0:8]
        time_string = what.attrs["time"][0:4] # ignore seconds
        starttime = datetime.strptime(date_string+"T"+time_string, "%Y%m%dT%H%M")
        if expiration_time:
            if starttime<expiration_time:
                raise H5ConversionSkip("Conversion of expired dataset (%s) skipped" % str(starttime))

        dataset = f[dataset_name.split("/")[0]] 
        data_1 = dataset[dataset_name.split("/")[1]]
        data = data_1["data"]

        data_what = data_1["what"]

        # read coornidates
        lon_min = where.attrs["LL_lon"]
        lon_max = where.attrs["UR_lon"]
        lat_min = where.attrs["LL_lat"]
        lat_max = where.attrs["UR_lat"]

        # non-rectangle datasets not supported (are they ever produced?)
#        if ( where.attrs["LL_lon"]!=where.attrs["UL_lon"] or \
#                where.attrs["LL_lat"]!=where.attrs["LR_lat"] or \
#                where.attrs["LR_lon"]!=where.attrs["UR_lon"] or \
#                where.attrs["UL_lat"]!=where.attrs["UR_lat"] ):
#            raise Exception("non-rectangle datasets not supported")

        proj_text = str(where.attrs["projdef"])
        h5_proj = Proj(proj_text)
        lonlat_proj = Proj(init="epsg:4326")
        # transfrom bounding box from lonlat -> laea
        xmin, ymin = transform(lonlat_proj,h5_proj,lon_min,lat_min)
        xmax, ymax = transform(lonlat_proj,h5_proj,lon_max,lat_max)

        # shape
        x_size = data.shape[1]
        y_size = data.shape[0]

        # generate axes
        x_axis = numpy.arange( xmin,xmax,(xmax-xmin)/x_size )
        #y_help_axis = numpy.arange( ymin,ymax,(ymax-ymin)/x_size )

        y_axis = numpy.arange( ymax,ymin,(ymin-ymax)/y_size )  # reversed
        #x_help_axis = numpy.arange( xmax,xmin,(xmin-xmax)/y_size ) # reverse this also

        missing_value = data_what.attrs["nodata"]
        missing_echo = data_what.attrs["undetect"]

        if data_type=="int":
            geotiff_data = numpy.uint8(data); 
            geotiff_data[numpy.where(geotiff_data==(missing_echo))]=1
            geotiff_data[numpy.where(geotiff_data==(missing_value))]=0
        else:
            offset = float(data_what.attrs["offset"])
            if first_iteration:
                geotiff_data = numpy.float32(data[:]) + numpy.float32(data_what.attrs["offset"])
                first_iteration = False
            else:
                geotiff_data = geotiff_data + numpy.float32(data[:]) + numpy.float32(data_what.attrs["offset"])
    # begin tiff file generation 
    driver = gdal.GetDriverByName('GTiff')
    if data_type=="int":
        gdt_data_type = GDT_Byte
    else:
        gdt_data_type = GDT_Float32
    # geotiff mask array?
    out = driver.Create(geotiff_target, geotiff_data.shape[1], geotiff_data.shape[0], 1, gdt_data_type)
#    out.SetMetadataItem("TIFFTAG_GDAL_NODATA",str(missing_value))
    out.SetMetadataItem("TIFFTAG_DATETIME",starttime.strftime("%Y-%m-%dT%H:%MZ"))
    #timestamp = datetime.utcnow().strftime("%Y-%m-%dT%H:%MZ")


    #geotiff_data[numpy.where(geotiff_data==(missing_value+offset))]=255

    out.SetGeoTransform([xmin, # grid must be regular!
                         (xmax - xmin)/geotiff_data.shape[1], # grid size, get lon index!
                         0,  
                         ymax,
                         0,
                         (ymin - ymax)/geotiff_data.shape[0]])
    srs = osr.SpatialReference()
    srs.ImportFromProj4( proj_text )
    out.SetProjection( srs.ExportToWkt() )
    # export to geotiff
    #gdal_array.BandWriteArray(out.GetRasterBand(1), geotiff_data)
    out.GetRasterBand(1).WriteArray( geotiff_data )
    
    # delete geotiff object to free memory
    del out

    f.close()
    return {"timestamp":starttime.strftime("%Y-%m-%dT%H:%MZ"),
            "projection": proj_text,
            "bbox_lonlat": "%f,%f,%f,%f" % (lon_min,lat_min,lon_max,lat_max),
            "bbox_original": "%f,%f,%f,%f" % (xmin,ymin,xmax,ymax)
            }
Ejemplo n.º 26
0
input_folder = args.i
fields_vector_file = args.f
output_folder = args.o
gdalwarp_base_cmd = args.gdal + '/gdalwarp -srcnodata 0 -dstnodata 0 -of GTiff -crop_to_cutline '

print('---------------Stage I ----------------')
print('Warping NDVI files..')

ndvi_files = NDVIFilesSeries(input_folder).get_files()
fields_data = vop.vector_file.get_all_geometry(fields_vector_file)

if not os.path.exists(output_folder):
    os.mkdir(output_folder)

srs_4326 = osr.SpatialReference()
srs_4326.ImportFromEPSG(4326)

for fd in fields_data:
    field_folder = os.path.join(output_folder, str(fd[0]))
    if not os.path.exists(field_folder):
        os.mkdir(field_folder)
    shp_file = os.path.join(field_folder, 'field_border.shp')
    #NDVIFilesSeries.create_shp(fd[1],shp_file)
    vop.vector_file.create_vector_file(fd[1], shp_file, srs_4326)
    for nf in ndvi_files:
        year = os.path.basename(nf)[0:4]
        cropped_tif = os.path.join(os.path.join(field_folder, year),
                                   os.path.basename(nf))
        if not os.path.exists(os.path.join(field_folder, year)):
            os.mkdir(os.path.join(field_folder, year))
Ejemplo n.º 27
0
def main(args=None):

    global Verbose
    global CreateOptions
    global Names
    global TileWidth
    global TileHeight
    global Format
    global BandType
    global Driver
    global Extension
    global MemDriver
    global TileIndexFieldName
    global TileIndexName
    global CsvDelimiter
    global CsvFileName

    global TileIndexDriverTyp
    global Source_SRS
    global TargetDir
    global ResamplingMethod
    global Levels
    global PyramidOnly
    global UseDirForEachRow

    gdal.AllRegister()

    if args is None:
        args = sys.argv
    argv = gdal.GeneralCmdLineProcessor(args)
    if argv is None:
        return 1

    # Parse command line arguments.
    i = 1
    while i < len(argv):
        arg = argv[i]

        if arg == '-of':
            i += 1
            Format = argv[i]
        elif arg == '-ot':
            i += 1
            BandType = gdal.GetDataTypeByName(argv[i])
            if BandType == gdal.GDT_Unknown:
                print('Unknown GDAL data type: %s' % argv[i])
                return 1
        elif arg == '-co':
            i += 1
            CreateOptions.append(argv[i])

        elif arg == '-v':
            Verbose = True

        elif arg == '-targetDir':
            i += 1
            TargetDir = argv[i]

            if os.path.exists(TargetDir) == False:
                print("TargetDir " + TargetDir + " does not exist")
                return 1
            if TargetDir[len(TargetDir) - 1:] != os.sep:
                TargetDir = TargetDir + os.sep

        elif arg == '-ps':
            i += 1
            TileWidth = int(argv[i])
            i += 1
            TileHeight = int(argv[i])

        elif arg == '-r':
            i += 1
            ResamplingMethodString = argv[i]
            if ResamplingMethodString == "near":
                ResamplingMethod = GRA_NearestNeighbour
            elif ResamplingMethodString == "bilinear":
                ResamplingMethod = GRA_Bilinear
            elif ResamplingMethodString == "cubic":
                ResamplingMethod = GRA_Cubic
            elif ResamplingMethodString == "cubicspline":
                ResamplingMethod = GRA_CubicSpline
            elif ResamplingMethodString == "lanczos":
                ResamplingMethod = GRA_Lanczos
            else:
                print("Unknown resampling method: %s" % ResamplingMethodString)
                return 1
        elif arg == '-levels':
            i += 1
            Levels = int(argv[i])
            if Levels < 1:
                print("Invalid number of levels : %d" % Levels)
                return 1
        elif arg == '-s_srs':
            i += 1
            Source_SRS = osr.SpatialReference()
            if Source_SRS.SetFromUserInput(argv[i]) != 0:
                print('invalid -s_srs: ' + argv[i])
                return 1

        elif arg == "-pyramidOnly":
            PyramidOnly = True
        elif arg == '-tileIndex':
            i += 1
            TileIndexName = argv[i]
            parts = os.path.splitext(TileIndexName)
            if len(parts[1]) == 0:
                TileIndexName += ".shp"

        elif arg == '-tileIndexField':
            i += 1
            TileIndexFieldName = argv[i]
        elif arg == '-csv':
            i += 1
            CsvFileName = argv[i]
            parts = os.path.splitext(CsvFileName)
            if len(parts[1]) == 0:
                CsvFileName += ".csv"
        elif arg == '-csvDelim':
            i += 1
            CsvDelimiter = argv[i]
        elif arg == '-useDirForEachRow':
            UseDirForEachRow = True
        elif arg[:1] == '-':
            print('Unrecognised command option: %s' % arg)
            Usage()
            return 1

        else:
            Names.append(arg)
        i += 1

    if len(Names) == 0:
        print('No input files selected.')
        Usage()
        return 1

    if (TileWidth == 0 or TileHeight == 0):
        print("Invalid tile dimension %d,%d" % (TileWidth, TileHeight))
        return 1

    if (TargetDir is None):
        print("Missing Directory for Tiles -targetDir")
        Usage()
        return 1

    # create level 0 directory if needed
    if (UseDirForEachRow and PyramidOnly == False):
        leveldir = TargetDir + str(0) + os.sep
        if (os.path.exists(leveldir) == False):
            os.mkdir(leveldir)

    if Levels > 0:  #prepare Dirs for pyramid
        startIndx = 1
        for levelIndx in range(startIndx, Levels + 1):
            leveldir = TargetDir + str(levelIndx) + os.sep
            if (os.path.exists(leveldir)):
                continue
            os.mkdir(leveldir)
            if (os.path.exists(leveldir) == False):
                print("Cannot create level dir: %s" % leveldir)
                return 1
            if Verbose:
                print("Created level dir: %s" % leveldir)

    Driver = gdal.GetDriverByName(Format)
    if Driver is None:
        print('Format driver %s not found, pick a supported driver.' % Format)
        UsageFormat()
        return 1

    DriverMD = Driver.GetMetadata()
    Extension = DriverMD.get(DMD_EXTENSION)
    if 'DCAP_CREATE' not in DriverMD:
        MemDriver = gdal.GetDriverByName("MEM")

    tileIndexDS = getTileIndexFromFiles(Names, TileIndexDriverTyp)
    if tileIndexDS is None:
        print("Error building tile index")
        return 1
    minfo = mosaic_info(Names[0], tileIndexDS)
    ti = tile_info(minfo.xsize, minfo.ysize, TileWidth, TileHeight)

    if Source_SRS is None and len(minfo.projection) > 0:
        Source_SRS = osr.SpatialReference()
        if Source_SRS.SetFromUserInput(minfo.projection) != 0:
            print('invalid projection  ' + minfo.projection)
            return 1

    if Verbose:
        minfo.report()
        ti.report()

    if PyramidOnly == False:
        dsCreatedTileIndex = tileImage(minfo, ti)
        tileIndexDS.Destroy()
    else:
        dsCreatedTileIndex = tileIndexDS

    if Levels > 0:
        buildPyramid(minfo, dsCreatedTileIndex, TileWidth, TileHeight)

    if Verbose:
        print("FINISHED")
    return 0
Ejemplo n.º 28
0
 def transformDialog(self):
     geosrs = osr.SpatialReference()
     geosrs.ImportFromEPSG(3857)
     self.transformProj(geosrs)
Ejemplo n.º 29
0
    except:
        pass

    img = Image.open(filename)

    # Create the new file.
    if args.filetype == 'pdf':
        img.save(output_file, 'PDF', resolution=100.0)
    elif args.filetype == 'tif':
        img.save(output_file)

    test_img = io.imread(filename)
    img = test_img[0]

    ds = gdal.Open(output_file, gdal.GA_Update)
    sr = osr.SpatialReference()
    sr.SetWellKnownGeogCS('WGS84')

    # Randomly sample points in the image.
    gcp_list = [(
        np.random.randint(img.shape[0]),
        np.random.randint(img.shape[1])
    ) for _ in range(5)]

    # Create the ground control points with the latitude/longitude coordinates.
    gcps = [ ]
    for gcp in gcp_list:
        lat, lon = pixel_to_lat_lon(gcp[0], gcp[1], filename)
        print(f'Lat, lon: {lat}, {lon}')
        gcps.append(gdal.GCP(lon, lat, 0, gcp[1], gcp[0]))
Ejemplo n.º 30
0
def gen_zonal_stats(vectors,
                    raster,
                    band=1,
                    stats=None,
                    categorical=False,
                    **kwargs):
    """"""
    logger.debug('Computing Zonal Statistics')

    # Should the raster be kept open or reopened for each feature?
    raster_ds = gdal.Open(raster, 0)
    raster_band = raster_ds.GetRasterBand(band)
    raster_nodata = raster_band.GetNoDataValue()
    raster_proj = raster_ds.GetProjection()
    raster_osr = osr.SpatialReference()
    raster_osr.ImportFromWkt(raster_proj)
    raster_geo = raster_ds.GetGeoTransform()
    raster_rows = raster_ds.RasterYSize
    raster_cols = raster_ds.RasterXSize
    cs = abs(raster_geo[1])
    raster_x = raster_geo[0]
    raster_y = raster_geo[3]
    raster_extent = [
        raster_x, raster_y - raster_rows * cs, raster_x + raster_cols * cs,
        raster_y
    ]

    # For now, hardcode to only process shapefile vector files
    vector_driver = ogr.GetDriverByName('ESRI Shapefile')
    vector_ds = vector_driver.Open(vectors, 0)
    vector_lyr = vector_ds.GetLayer()
    vector_osr = vector_lyr.GetSpatialRef()

    # Project vector geometry to the raster spatial reference
    vector_tx = osr.CoordinateTransformation(vector_osr, raster_osr)

    logger.debug('Raster: {}'.format(raster))
    logger.debug('  WKT: {}'.format(raster_osr.ExportToWkt()))
    logger.debug('  Rows:     {}'.format(raster_rows))
    logger.debug('  Cols:     {}'.format(raster_cols))
    logger.debug('  Extent:   {}'.format(raster_extent))
    logger.debug('  Geo:      {}'.format(raster_geo))
    logger.debug('  Cellsize: {}'.format(cs))
    logger.debug('  Snap X:   {}'.format(raster_x))
    logger.debug('  Snap Y:   {}'.format(raster_y))
    logger.debug('Vectors: {}'.format(vectors))
    logger.debug('  WKT: {}'.format(vector_osr.ExportToWkt()))

    # Iterate through the features
    for vector_ftr in vector_lyr:
        fid = vector_ftr.GetFID()

        # Project the geometry
        vector_geom = vector_ftr.GetGeometryRef()
        v_geom = vector_geom.Clone()
        v_geom.Transform(vector_tx)

        # Get the projected geometry extent
        extent = list(v_geom.GetEnvelope())

        # Convert to an OGR style extent (xmin, ymin, xmax, ymax)
        extent = [extent[0], extent[2], extent[1], extent[3]]

        # Expand the vector extent to the raster transform
        extent[0] = math.floor((extent[0] - raster_x) / cs) * cs + raster_x
        extent[1] = math.floor((extent[1] - raster_y) / cs) * cs + raster_y
        extent[2] = math.ceil((extent[2] - raster_x) / cs) * cs + raster_x
        extent[3] = math.ceil((extent[3] - raster_y) / cs) * cs + raster_y

        # TODO: Check if zone extent intersects the raster extent

        # Clip the zone extent to the raster extent
        extent[0] = max(extent[0], raster_extent[0])
        extent[1] = max(extent[1], raster_extent[1])
        extent[2] = min(extent[2], raster_extent[2])
        extent[3] = min(extent[3], raster_extent[3])

        # Compute raster properties
        cols = int((abs(extent[2] - extent[0]) / cs) + 0.5)
        rows = int((abs(extent[3] - extent[1]) / cs) + 0.5)
        geo = [extent[0], cs, 0, extent[3], 0, -cs]
        i = int(round((geo[0] - raster_geo[0]) / cs, 0))
        j = int(round((geo[3] - raster_geo[3]) / -cs, 0))

        # logger.debug('FID: {}'.format(fid))
        # logger.debug('  Rows:   {}'.format(rows))
        # logger.debug('  Cols:   {}'.format(cols))
        # logger.debug('  Extent: {}'.format(extent))
        # logger.debug('  Geo:    {}'.format(geo))
        # logger.debug('  i:      {}'.format(i))
        # logger.debug('  j:      {}'.format(j))

        # Create an in-memory dataset/layer for each feature
        v_driver = ogr.GetDriverByName('Memory')
        v_ds = v_driver.CreateDataSource('out')
        v_lyr = v_ds.CreateLayer('poly',
                                 geom_type=ogr.wkbPolygon,
                                 srs=raster_osr)
        v_feat = ogr.Feature(v_lyr.GetLayerDefn())
        v_feat.SetGeometryDirectly(v_geom)
        v_lyr.CreateFeature(v_feat)

        # Create an in-memory raster to set from the vector data
        mask_driver = gdal.GetDriverByName('MEM')
        mask_ds = mask_driver.Create('', cols, rows, 1, gdal.GDT_Byte)
        mask_ds.SetProjection(raster_proj)
        mask_ds.SetGeoTransform(geo)
        mask_band = mask_ds.GetRasterBand(1)
        mask_band.Fill(0)
        mask_band.SetNoDataValue(0)
        gdal.RasterizeLayer(mask_ds, [1], v_lyr, burn_values=[1])

        # Read the vector mask array
        mask = mask_band.ReadAsArray(0, 0, cols, rows).astype(np.bool)

        # Read the data array
        array = raster_band.ReadAsArray(i, j, cols, rows)

        # Mask nodata pixels
        if (raster_nodata is not None
                and array.dtype in [np.float32, np.float64]):
            array[array == raster_nodata] = np.nan

        # Apply the zone mask
        # This might contribute to memory issues
        array = array[mask]

        if categorical and array.dtype not in [np.float32, np.float64]:
            # Compute categorical stats
            ftr_stats = dict(zip(*np.unique(array, return_counts=True)))
        else:
            ftr_stats = {stat: None for stat in stats}

            # Remove all nan values before computing statistics
            if np.any(np.isnan(array)):
                array = array[np.isfinite(array)]

            for stat in stats:
                if not np.any(array):
                    continue
                elif stat == 'mean':
                    ftr_stats[stat] = float(np.mean(array))
                elif stat == 'max':
                    ftr_stats[stat] = float(np.max(array))
                elif stat == 'min':
                    ftr_stats[stat] = float(np.min(array))
                elif stat == 'median':
                    ftr_stats[stat] = float(np.median(array))
                elif stat == 'sum':
                    ftr_stats[stat] = float(np.sum(array))
                elif stat == 'std':
                    ftr_stats[stat] = float(np.std(array))
                elif stat == 'var':
                    ftr_stats[stat] = float(np.var(array))
                elif stat == 'count':
                    ftr_stats[stat] = float(np.sum(np.isfinite(array)))
                else:
                    raise ValueError('Stat {} not supported'.format(stat))

        # Cleanup
        del array, mask
        v_ds = None
        mask_band = None
        mask_ds = None
        del v_ds, v_lyr, v_feat, v_geom, v_driver
        del mask_ds, mask_band, mask_driver

        yield ftr_stats

    # Cleanup
    vector_lyr = None
    vector_ds = None
    raster_band = None
    raster_ds = None
    del vector_ds, vector_lyr
    del raster_ds, raster_band