Ejemplo n.º 1
0
def exportBuildings(settlements, distance):
    unnamed = 1
    places = []
    for node in settlements.nodes:
        locCoord = (float(node.lat), float(node.lon))
        placeName = "unnamed"
        if "name:en" in node.tags:
            placeName = node.tags["name:en"]
        elif "name" in node.tags:
            placeName = node.tags["name"]
        else:
            placeName += str(unnamed)
            unnamed += 1
        try:
            buildings = ox.buildings_from_point(point=locCoord,
                                                distance=distance)
            ox.save_gdf_shapefile(buildings,
                                  filename=placeName,
                                  folder="SHP/Buildings")
            places.append(placeName)
        except KeyError as e:
            print('error on ' + placeName)
        except:
            print('I got another exception')
    return places
Ejemplo n.º 2
0
def Save_OSM_gdf_proj(placename=placename, network_type= 'walk', suffix=suffix, folder=OSM_folder):    
    """
    save a projected geodataframe from a projected graphml file
    Parameters
    ----------
    network_type : string
        what type of street network to get. Default type is pedestrain network
    placename: string
        place name
    suffix: string
        output data date
    folder : string
        where to save the shapefile, specify local folder path for OSM resource
    Returns
    -------
    none

    """
    G_proj = ox.load_graphml(filename='{studyregion}_proj_{network_type}{suffix}.graphml'.format(
        studyregion = placename, network_type=network_type, suffix = suffix), folder=folder)
    
    #save projected network geodataframe as shapefile (project to UTM so we can use metres as a unit when buffering)
    edges_proj_gdfs = ox.graph_to_gdfs(G_proj, nodes=False, edges=True, fill_edge_geometry=True)
    ox.save_gdf_shapefile(edges_proj_gdfs, filename='{studyregion}_proj_{network_type}{suffix}'.format(
        studyregion = placename, network_type=network_type, suffix = suffix), folder=folder)
    
    #show network figure
    fig, ax = plt.subplots(figsize=(5, 5))
    ax = edges_proj_gdfs.plot(ax=ax)
    ax.set_axis_off()
    fig.suptitle('{} OSM {} street network'.format(placename, network_type), fontsize=14, fontweight='bold')
    plt.show()
Ejemplo n.º 3
0
def getChangchunReign():

    city = ox.gdf_from_places(
        ['南关区,长春,中国', '朝阳区,长春,中国', '二道区,长春,中国', '绿园区,长春,中国', '宽城区,长春,中国'])
    city = ox.project_gdf(city)
    ox.save_gdf_shapefile(city, filename='test1')  #save
    ox.plot_shape(city)  #show
Ejemplo n.º 4
0
def test_gdf_shapefiles():
    # test loading spatial boundaries, saving as shapefile, and plotting
    city = ox.gdf_from_place('Manhattan, New York City, New York, USA')
    city_projected = ox.project_gdf(city, to_crs={'init': 'epsg:3395'})
    ox.save_gdf_shapefile(city_projected)

    city = ox.gdf_from_place('Manhattan, New York City, New York, USA', buffer_dist=100)
    ox.plot_shape(city)
Ejemplo n.º 5
0
def test_gdf_shapefiles():

    city = ox.gdf_from_place('Manhattan, New York City, New York, USA')
    city_projected = ox.project_gdf(city, to_crs={'init':'epsg:3395'})
    ox.save_gdf_shapefile(city_projected)

    city = ox.gdf_from_place('Manhattan, New York City, New York, USA', buffer_dist=100)
    ox.plot_shape(city)
Ejemplo n.º 6
0
def test_gdf_shapefiles():

    # test loading spatial boundaries, saving as shapefile, and plotting
    city = ox.gdf_from_place('Manhattan, New York City, New York, USA')
    city_projected = ox.project_gdf(city, to_crs={'init':'epsg:3395'})
    ox.save_gdf_shapefile(city_projected)

    city = ox.gdf_from_place('Manhattan, New York City, New York, USA', buffer_dist=100)
    ox.plot_shape(city)
Ejemplo n.º 7
0
def test_gdf_shapefiles():

    with httmock.HTTMock(get_mock_response_content()):
        city = ox.gdf_from_place('Manhattan, New York City, New York, USA')
    city_projected = ox.project_gdf(city, to_crs={'init':'epsg:3395'})
    ox.save_gdf_shapefile(city_projected)

    with httmock.HTTMock(get_mock_response_content()):
        city = ox.gdf_from_place('Manhattan, New York City, New York, USA', buffer_dist=100)
    ox.plot_shape(city)
Ejemplo n.º 8
0
def save(G, fName):
    """suggest different file formats"""
    nx.write_gml(G, fName + ".gml")
    # G = nx.read_gml(fName+".gml")
    if False:
        ox.save_graphml(G, filename=fName, folder=baseDir + "gis/graph/")
        ox.save_gdf_shapefile(graph, filename=fName + ".gdf", folder=baseDir + "gis/graph/")
        ox.save_graphml(G, filename=gName, folder=baseDir + "gis/graph/")
        G = ox.load_graphml(filename=gName, folder=baseDir + "gis/graph/")
        ox.save_gdf_shapefile(G, filename=fName + ".gdf", folder=baseDir + "gis/graph/")
        G = ox.load_graphml(filename=fName + ".gdf", folder=baseDir + "gis/graph/")
        nx.readwrite.write_shp(G, baseDir + "gis/graph/berlin_street")
        nx.write_graphml_lxml(G, baseDir + "fName" + ".graphml")
Ejemplo n.º 9
0
def build_gdf(places, gdf_name, location=PATH_GDF, save_gdf=True):

    places = [places] if isinstance(places, list) else places
    state = False

    print(f'Building GDF for {places}')

    try:
        gdf = ox.gdf_from_place(places, gdf_name=gdf_name)
        ox.save_gdf_shapefile(gdf, gdf_name, location) if save_gdf else None
        state = True
    except Exception as exc:
        print(exc)

    return state
Ejemplo n.º 10
0
def get_osm_highways_in_bounds(bounds,
                               network_type='all',
                               simplify=True,
                               to_save=False,
                               out_dir=None):
    """
    Args:
    - bounds (tuple): min_x, min_y, max_x, max_y
    
    Returns:
    - gdf_e (geopandas DataFrame)
    - (Optionally) saves to a shapefile
    
    """
    bbox = to_osmbbox(bounds) #north, south, east, west (ie. max_lat, min_lat, max_lon, min_lon)
    g = ox.graph_from_bbox(*bbox, network_type=network_type, simplify=simplify)
    gdf_nodes, gdf_edges = ox.graph_to_gdfs(g)
    
    # drop unnecessay columns
    if 'ref' in gdf_nodes.columns:
        gdf_nodes.drop('ref', axis=1, inplace=True)
    
    edge_cols_keep = ['geometry', 'highway','length', 'osmid']
    gdf_edges = gdf_edges[edge_cols_keep]
    
    if to_save:
        now = now_str()
        out_dir = out_dir or f'/tmp/osmnx/highways/{now}'
        if isinstance(out_dir, str):
            out_dir = Path(out_dir)
        if not out_dir.exists():
            out_dir.mkdir(parents=True)
            print(f'{out_dir} is created')
        ox.save_gdf_shapefile(gdf_edges, 'osm_edges', str(out_dir))
        ox.save_gdf_shapefile(gdf_nodes, 'osm_nodes', str(out_dir))
        print(f"Saved gdf_edges to {out_dir}/osm_edges")
        print(f"Saved gdf_nodes to {out_dir}/osm_nodes")
        
    return gdf_nodes, gdf_edges
Ejemplo n.º 11
0
import shapefile
from json import dumps
import osmnx as ox
%matplotlib inline
ox.config(log_console=True, use_cache=True)
ox.__version__

place = 'Piedmont, California, USA'
gdf = ox.gdf_from_place(place)
gdf.loc[0, 'geometry']
ox.save_gdf_shapefile(gdf, filename='place-shape2', folder='data')

# read the shapefile
reader = shapefile.Reader("data/place-shape2/place-shape2.shp")
fields = reader.fields[1:]
field_names = [field[0] for field in fields]
buffer = []
for sr in reader.shapeRecords():
    atr = dict(zip(field_names, sr.record))
    geom = sr.shape.__geo_interface__
    buffer.append(dict(type="Feature", \
     geometry=geom, properties=atr))
# write the GeoJSON file

geojson = open("pyshp-demo.json", "w")
geojson.write(dumps({"type": "FeatureCollection", "features": buffer}, indent=2) + "\n")
geojson.close()
Ejemplo n.º 12
0
    start_0 = time.time()

    # Create and check the path
    path = 'data/bikes_streets/{}/'.format(name)
    assure_path_exists(path)

    path_simple = 'data/bikes_streets/{}/simple/'.format(name)
    assure_path_exists(path_simple)

    print('Starting with: {}'.format(name))

    # Download the shape
    city_shape = area(city)
    city_shape = ox.project_gdf(city_shape)
    ox.save_gdf_shapefile(city_shape,
                          filename='{}_shape'.format(name),
                          folder=path)
    print('Saved')
    ox.plot_shape(city_shape)

    # Drive
    '''
    G_drive = get_network(city, n_type='drive')
    ox.save_graphml(G_drive, filename='{}_drive.graphml'.format(name), folder=path)
    print('{} Drive downloaded and saved. Elapsed time {} s\nSimplifying the network...'.format(
        name, round(time.time()-start_0, 2)))
    G_simple = simplify_graph(G_drive)
    nx.write_edgelist(G_simple, path=path_simple+'{}_drive_simple.txt'.format(name))
    print('{} Drive simplified and saved. Elapsed time {} s'.format(
        name, round(time.time()-start_0, 2)))
Ejemplo n.º 13
0
import osmnx as ox, geopandas as gpd
ox.config(log_file=True, log_console=True, use_cache=True)
location_point = (-17.1010286, 145.7753749)
gdf = ox.buildings_from_point(point=location_point, distance=5000)
gdf_proj = ox.project_gdf(gdf)
bbox = ox.bbox_from_point(point=location_point,
                          distance=5000,
                          project_utm=True)
fig, ax = ox.plot_buildings(gdf_proj)

import osmnx as ox, geopandas as gpd
ox.config(log_file=True, log_console=True, use_cache=True)

place_names = ['Gordonvale, Queensland, Australia']
east_bay = ox.gdf_from_places(place_names)
ox.save_gdf_shapefile(east_bay)
east_bay = ox.project_gdf(east_bay)
fig, ax = ox.plot_shape(east_bay)

import osmnx as ox
ox.config(log_file=True, log_console=True, use_cache=True)
city = ox.gdf_from_place('Sydney, New South Wales, Australia')
city
ox.save_gdf_shapefile(city)
city = ox.project_gdf(city)
fig, ax = ox.plot_shape(city)

import osmnx as ox
from IPython.display import Image
ox.config(log_console=True, use_cache=True)
Ejemplo n.º 14
0
import osmnx as ox
%matplotlib inline
ox.config(log_console=True, use_cache=True)
ox.__version__

##Area by lat/long points listed below:
north, south, east, west = 40.0680, 40.0135, -111.7046, -111.7771


'''
place = 'Payson, Utah, USA'
gdf = ox.gdf_from_place(place)
#gdf.loc[0, 'geometry']
ox.save_gdf_shapefile(gdf, filename='place-shape2', folder='data')'''

print('hi')

B = ox.graph_from_bbox(north, south, east, west, network_type='drive')
ox.save_graph_shapefile(B, filename='the-place', folder='data')

print('hi hi')
'''B = ox.graph_from_bbox(north, south, east, west, network_type='drive')
gdf_nodes, gdf_edges = ox.graph_to_gdfs(
        B,
        nodes=True, edges=True,
        node_geometry=True,
        fill_edge_geometry=True)

ox.save_gdf_shapefile(gdf_nodes, filename='the_places_nodes', folder='data')
ox.save_gdf_shapefile(gdf_edges, filename='the_places_edges', folder='data')
Ejemplo n.º 15
0
# coding: utf-8

# In[5]:


import osmnx as ox
city = ox.gdf_from_place('Berkeley, California')
ox.plot_shape(ox.project_gdf(city))


# In[10]:


places = ox.gdf_from_places(['Botswana', 'Zambia', 'Zimbabwe'])
places = ox.project_gdf(places)
ox.save_gdf_shapefile(places)
ox.plot_shape(ox.project_gdf(places))


# In[11]:


G = ox.graph_from_bbox(37.79, 37.78, -122.41, -122.43, network_type='drive')
G_projected = ox.project_graph(G)
ox.plot_graph(G_projected)


# In[12]:


G = ox.graph_from_point((37.79, -122.41), distance=750, network_type='all')
Ejemplo n.º 16
0
for city_polygon,city_name,e,w,n,s in zip(dongSanSheng['geometry'],dongSanSheng['place_name'],dongSanSheng['bbox_east'],dongSanSheng['bbox_west'],dongSanSheng['bbox_north'],dongSanSheng['bbox_south']):
    placeName = city_name.split(',')[0]
    placeName = placeName.split('/')
    print(placeName)
    if len(placeName) > 1 and placeName[1].strip() == '白山市':
        placeName = '白山市'
    else:
        placeName = placeName[0].strip() 
    if isinstance(city_polygon, (Polygon, MultiPolygon)):
        x = (float(e) + float(w))/2
        y = (float(n) + float(s))/2
        city_point_df = GeoDataFrame([{'geometry' : Point(x, y).buffer(0.6)}])
        city_point_polygon = city_point_df['geometry'][0]
        print(placeName)
        dongSanSheng_city_byPoint = GeoDataFrame([{'place_name':placeName, 'geometry':city_point_polygon}])
        objectName = placeName + '坐标圆001'
        ox.save_gdf_shapefile(dongSanSheng_city_byPoint,filename=objectName, folder='osmnx_data/city/')
        filename1 = 'osmnx_data/city/'+objectName+'/'+placeName+'坐标圆001.shp'
        filename2 = 'osmnx_data/city/shp/'+placeName+'001.shp'
    elif isinstance(city_polygon, Point):
        city_point_df = GeoDataFrame([{'geometry' : city_polygon.buffer(0.6)}])
        city_point_polygon = city_point_df['geometry'][0]
        print(placeName)
        dongSanSheng_city_byPoint = GeoDataFrame([{'place_name':placeName, 'geometry':city_point_polygon}])
        objectName = placeName + '坐标圆001'
        ox.save_gdf_shapefile(dongSanSheng_city_byPoint,filename=objectName, folder='osmnx_data/city/')
        filename1 = 'osmnx_data/city/'+objectName+'/'+placeName+'坐标圆001.shp'
        filename2 = 'osmnx_data/city/shp/'+placeName+'001.shp'
    else:
        print('wrong datatype!')
Ejemplo n.º 17
0
nx.write_shp(g, baseDir + "gis/graph/network_de")
pg = nx.to_pandas_edgelist(g)
pg = gpd.GeoDataFrame(pg)
pg.to_file(baseDir + "gis/graph/network_de.geojson")

nx.set_edge_attributes(graph, keys)

nx.write_shp(graph, baseDir + "gis/graph/")
nx.write_gml(graph, baseDir + "gis/graph/network_de")
nx.write_gexf(g, baseDir + "gis/graph/network_de.gexf")

ox.save_graphml(graph,
                filename="routes_germany.graphml",
                folder=baseDir + "gis/graph/")
ox.save_gdf_shapefile(graph,
                      filename="routes_germany.gdf",
                      folder=baseDir + "gis/graph/")
pg = nx.to_pandas_edgelist(graph)
pg = gpd.GeoDataFrame(pg)
pg.to_file(baseDir + "gis/graph/network_de.geojson")
pg.to_file(baseDir + "gis/graph/network_de.shp", driver='ESRI Shapefile')
print(fiona.supported_drivers)

zipN = pd.read_csv(baseDir + 'gis/graph/zip_node.csv')

nodeG = list(graph.nodes(data=True))
nodeD = pd.DataFrame(nodeG)
nodeL = []
for g in nodeG:
    kDict = g[1]
    kDict['id'] = g[0]
Ejemplo n.º 18
0
import networkx as nx
import numpy as np
import pandas as pd
import matplotlib.cm as cm

# filter residential and unclassified roads road
filter = (
    '["highway"!~"residential|unclassified|living_street|track|abandoned|path|footway|service|pedestrian|road|'
    'raceway|cycleway|steps|construction"]')

Catania = ox.graph_from_address('Catania, Italy',
                                distance=20000,
                                network_type='drive',
                                custom_filter=filter)

# check what is inside the edges (type of roads)
edge_file = Catania.edges(keys=True, data=True)
ox.plot_graph(Catania)

Catania_shp = ox.gdf_from_place('Catania, Italy')
ox.save_gdf_shapefile(Catania_shp)

# save street network as GraphML file
# Catania_projected = ox.project_graph(Catania)
# ox.save_graphml(Catania_projected, filename='network_Catania_20km_epgs4326.graphml')
ox.save_graphml(Catania, filename='network_Catania_20km_epgs4326.graphml')

# save street network as ESRI shapefile (includes NODES and EDGES)
# ox.save_graph_shapefile(Catania_projected, filename='networkCatania_20km__shape')
ox.save_graph_shapefile(Catania, filename='networkCatania_20km__shape')
Ejemplo n.º 19
0
place_names = ['Ho Chi Minh City, Vietnam',
               #'Beijing, China', 
               #'Jakarta, Indonesia',
               'London, UK',
               'Los Angeles, California, USA',
               'Manila, Philippines',
               #'Mexico City, Mexico',
               'New Delhi, India',
               'Sao Paulo, Brazil',
               'New York, New York, USA',
               'Seoul',
               'Singapore',
               #'Tokyo, Japan',
               #'Nairobi, Kenya',
               #'Bangalore, India'
              ]
              
# In this for-loop, we save all the shapefiles for the valid cities.
for city in place_names:  
    city_admin_20kmbuff = ox.gdf_from_place(city, gdf_name = 'global_cities', buffer_dist = 20000)
    fig, ax = ox.plot_shape(city_admin_20kmbuff)
    ox.save_gdf_shapefile(city_admin_20kmbuff, filename = city)
    
# In this for-loop, we save all the street networks for the valid cities.
for city in place_names:
    grid = ox.graph_from_place(city, network_type = 'drive', retain_all = True)
    grid_projected = ox.project_graph(grid)
    ox.save_graph_shapefile(grid_projected, filename = city + '_grid')
    ox.plot_graph(grid_projected)
Ejemplo n.º 20
0
@file: osmnxTest.py 
@time: 2018/05/{DAY} 
描述: 

"""

import osmnx as ox
from folium import folium

ox.config(log_file=True, log_console=True, use_cache=True)

# from some place name, create a GeoDataFrame containing the geometry of the place
city = ox.gdf_from_place('雁塔区, 西安, 中国')
#lding = ox.buildings.buildings_from_place('陕西省, 中国')
# save the retrieved data as a shapefile
ox.save_gdf_shapefile(city, u'雁塔区', r'./data/')

#Get building footprints within the boundaries of some place.
aaaBuilding = ox.buildings.buildings_from_place(place=u'雁塔区, 西安, 中国')
#gdf = ox.buildings_from_place(place='Piedmont, California, USA')
ox.save_gdf_shapefile(aaaBuilding, 'test', r'./data/')

#Get building footprints within some distance north, south, east, and west of an address.
#address_rect = ox.buildings.buildings_from_address('钟楼, 南大街, 南院门街道, 碑林区, 西安市, 陕西省, 710001, 中国', 3000)

point_rect = ox.buildings.buildings_from_point((34.374944, 107.129382),
                                               300,
                                               retain_invalid=False)
#Get building footprints within some distance north, south, east, and west of a lat-long point.
ox.plot_shape(point_rect)
Ejemplo n.º 21
0
    # 8. STORE RESULTS TO DISK

    edges = generate_xtra_conveyal_tags(edges)

    # project the edges back to lat/lon coordinate system
    edges = edges.to_crs('EPSG:4326')

    if save_as == 'shp':
        out_path = os.path.join(data_dir, out_fname)
        # turn the edges back to a graph to save as shapefile
        logger.info('Saving graph as shapefile. This might take a while...')
        nodes.gdf_name = 'nodes'
        # ox.save_gdf_shapefile(nodes, 'nodes', out_path)
        edges.gdf_name = 'edges'
        ox.save_gdf_shapefile(edges, 'edges', out_path)

    elif save_as in ['osm', 'pbf']:
        logger.info('Saving graph as OSM XML. This might take a while...')
        ox.save_as_osm([nodes, edges],
                       filename=out_fname + '.osm',
                       folder=data_dir,
                       node_tags=ox.settings.osm_xml_node_tags,
                       node_attrs=ox.settings.osm_xml_node_attrs,
                       edge_tags=ox.settings.osm_xml_way_tags,
                       edge_attrs=ox.settings.osm_xml_way_attrs,
                       merge_edges=False)

        if save_as == 'pbf':
            logger.info('Converting OSM XML to .pbf')
            os.system("osmconvert {0}.osm -o={0}.osm.pbf".format(
Ejemplo n.º 22
0
#Load package ####################################################
import osmnx as ox, geopandas as gpd
import os, sys
#os.chdir('./BRInE/')                           #Uncomment if running from Atom
from IPython.display import Image
ox.config(log_file=True,log_console=True,use_cache=True)
# Define functions ###############################################
def make_plot(place, point, network_type='drive', bldg_color='orange', dpi=250,dist=1000, default_width=4, street_widths=None):
    gdf=ox.buildings_from_point(point=point, distance=dist)
    gdf_proj=ox.project_gdf(gdf)
    fig, ax=ox.plot_figure_ground(point=point, dist=dist, network_type=network_type, default_width=default_width,street_widths=None, save=False, show=False, close=True)
    fig, ax=ox.plot_buildings(gdf_proj, fig=fig, ax=ax, color=bldg_color, set_bounds=False,save=True, show=False, close=True, filename=place, dpi=dpi)
clArguments=sys.argv[1:]
# Location #######################################################

locCoord=(float(clArguments[1]),float(clArguments[2]))

placeName=clArguments[0]
distance=int(clArguments[3])
size=1000
# Buildings ######################################################
buildings=ox.buildings_from_point(point=locCoord,distance=distance)
ox.save_gdf_shapefile(buildings,filename=placeName,folder="SHP/Buildings")
# Roads ##########################################################
#roads=ox.graph_from_point(locCoord,distance=distance,network_type='drive')
#ox.save_graphml(roads,filename=placeName,folder="NTW/Roads")
#ox.save_graph_shapefile(roads, filename=placeName,folder="SHP/Roads")
# Image ##########################################################
# make_plot(placeName,locCoord,dpi=500,dist=distance,default_width=1)
place_name = 'Dakar, Senegal'
G = ox.graph_from_place(place_name, which_result=3)
G_proj = ox.project_graph(G, to_crs=CRS("EPSG:3857"))
nodes_proj, edges_proj = ox.graph_to_gdfs(G_proj)
ox.save_graph_shapefile(G_proj, filename='graph')

#retrieve saved graph and use (if necessary)
edges_saved = "data/graph/edges/edges.shp"
nodes_saved = "data/graph/nodes/nodes.shp"
edges_proj = gpd.read_file(edges_saved)
nodes_proj = gpd.read_file(nodes_saved)

###get boundary of study area
boundary = ox.gdf_from_place(place_name, which_result=3)
boundary_proj = boundary.to_crs(edges_proj.crs)
ox.save_gdf_shapefile(boundary_proj, filename='boundary')

boundary_saved = "data/boundary/boundary.shp"
boundary_proj = gpd.read_file(boundary_saved)

###points-of-interest of study area

### hospitals
hospitals = ox.pois_from_place(place_name,
                               which_result=3,
                               amenities=['hospital'])[[
                                   'osmid', 'geometry', 'amenity', 'name',
                                   'element_type'
                               ]]

hospitals = hospitals[hospitals.element_type == 'way']
Ejemplo n.º 24
0
# walk - get all streets and paths that pedestrians can use (this network type ignores one-way directionality)
# bike - get all streets and paths that cyclists can use
# all - download all non-private OSM streets and paths
# all_private - download all OSM streets and paths, including private-access ones

basic_stats = ox.basic_stats(B)
print(basic_stats['circuity_avg'])
# ans: [1.1167206203103612]
# In this street network, the streets are 12% more circuitous than the straight-lines paths would be.

extended_stats = ox.extended_stats(B)
print(extended_stats['pagerank_max_node'])

# Create place boundary shapefiles from OpenStreetMap
Bracciano_shp = ox.gdf_from_place('Bracciano, Italy')
ox.save_gdf_shapefile(Bracciano_shp)

# using NetworkX to calculate the shortest path between two random nodes
route = nx.shortest_path(B, np.random.choice(B.nodes),
                         np.random.choice(B.nodes))
ox.plot_graph_route(B, route, fig_height=10, fig_width=10)

# save street network as GraphML file
B_projected = ox.project_graph(B)
ox.save_graphml(B_projected, filename='network_Bracciano_6km_epgs4326.graphml')

# save street network as ESRI shapefile (includes NODES and EDGES)
ox.save_graph_shapefile(B_projected, filename='networkBracciano-shape')

#street network from bounding box
#G = ox.graph_from_bbox(42.2511, 41.3860, 11.6586, 13.4578, network_type='drive_service')
Ejemplo n.º 25
0
ox.plot_graph(ox.graph_from_place('Houston, Texas, USA'))
plt.savefig("ss.jpg")
plt.plot()

# %%
import geopandas as gpd

os.environ["PROJ_LIB"] = r"C:\Users\User\Anaconda3\Library\share"
import matplotlib.pyplot as plt

import osmnx as ox

ox.config(log_console=True, use_cache=True)
print(ox.__version__)
city = ox.gdf_from_place('Manhattan Island, New York, New York, USA')
ox.save_gdf_shapefile(city)
city = ox.project_gdf(city)
fig, ax = ox.plot_shape(city, figsize=(3, 3))
plt.plot()

# %% http://ericmjl.github.io/Network-Analysis-Made-Simple/2-networkx-basics-instructor.html
out = pd.read_csv(os.path.join("two_component", "moreno_seventh",
                               "out.moreno_seventh_seventh"),
                  skiprows=2,
                  sep=" ",
                  names=["from", "to", "w"])
with open(
        os.path.join("two_component", "moreno_seventh",
                     "ent.moreno_seventh_seventh.student.gender")) as f:
    gender = f.read()
gender = gender.split("\n")