label='Sphere parameter')
    fig = ax.get_figure()
    fig.set_size_inches([10, 5])
    ax.set_xlim([0, 1])
    ax.set_xlabel('Parameter value')
    ax.set_ylabel('# voxels')
    ax.legend()
    fig.savefig(
        '/Users/arokem/Dropbox/DWI_figures/MultiCanonicalTensor_params_%s.png'
        % b)

    idx = np.logical_and(to_hist1 < 1, to_hist2 < 1)

    T1 = ni.load(data_path + 'FP_t1_resampled_to_dwi.nii.gz').get_data()

    fig = viz.mosaic(T1.T, cmap=matplotlib.cm.bone, cbar=False)
    fig = viz.mosaic(Model1.model_params[:, :, :, 1].T,
                     fig=fig,
                     cmap=matplotlib.cm.hot,
                     vmax=1)
    fig.set_size_inches([12, 8])
    fig.savefig(
        '/Users/arokem/Dropbox/DWI_figures/MultiCanonicalTensor_tensor_param%s.png'
        % b)

    fig = viz.mosaic(T1.T, cmap=matplotlib.cm.bone, cbar=False)
    fig = viz.mosaic(Model1.model_params[:, :, :, 2].T,
                     fig=fig,
                     cmap=matplotlib.cm.hot,
                     vmax=1)
    fig.set_size_inches([12, 8])
# Set the background to black:
t1_d[~np.isfinite(t1_d)] = 0

fig_hist_rmse, ax_hist_rmse = plt.subplots(1)
fig_hist_snr, ax_hist_snr = plt.subplots(1)

for bval_idx, bval in enumerate([1000, 2000, 4000]):

    snr_file_name = "%ssnr_b%s.nii.gz" % (data_path, bval)
    rmse_file_name = "%ssignal_rmse_b%s.nii.gz" % (data_path, bval)

    signal_rmse = ni.load(rmse_file_name).get_data()
    snr = ni.load(snr_file_name).get_data()
    vol = ozu.nans(signal_rmse.shape)
    vol[mask_idx] = signal_rmse[mask_idx]
    fig = viz.mosaic(t1_d.T[23:-12], cmap=matplotlib.cm.bone, cbar=False)
    fig = viz.mosaic(vol.T[23:-12], fig=fig, cmap=matplotlib.cm.hot)
    fig.set_size_inches([15, 10])
    fig.savefig("%ssignal_rmse_b%s.png" % (figure_path, bval))

    vol = ozu.nans(snr.shape)
    vol[mask_idx] = snr[mask_idx]
    fig = viz.mosaic(t1_d.T[23:-12], cmap=matplotlib.cm.bone, cbar=False)
    fig = viz.mosaic(vol.T[23:-12], fig=fig, cmap=matplotlib.cm.hot)
    fig.set_size_inches([15, 10])
    fig.savefig("%ssignal_snr_b%s.png" % (figure_path, bval))

    rmse_mask = signal_rmse[mask_idx]
    fig_hist_rmse = viz.probability_hist(
        rmse_mask[np.isfinite(rmse_mask)], bins=100, fig=fig_hist_rmse, label="b=%s" % bval
    )
Ejemplo n.º 3
0
# Set the background to black:
t1_d[~np.isfinite(t1_d)] = 0

fig_hist_rmse, ax_hist_rmse = plt.subplots(1)
fig_hist_snr, ax_hist_snr = plt.subplots(1)

for bval_idx, bval in enumerate([1000, 2000, 4000]):

    snr_file_name = '%ssnr_b%s.nii.gz' % (data_path, bval)
    rmse_file_name = '%ssignal_rmse_b%s.nii.gz' % (data_path, bval)

    signal_rmse = ni.load(rmse_file_name).get_data()
    snr = ni.load(snr_file_name).get_data()
    vol = ozu.nans(signal_rmse.shape)
    vol[mask_idx] = signal_rmse[mask_idx]
    fig = viz.mosaic(t1_d.T[23:-12], cmap=matplotlib.cm.bone, cbar=False)
    fig = viz.mosaic(vol.T[23:-12], fig=fig, cmap=matplotlib.cm.hot)
    fig.set_size_inches([15, 10])
    fig.savefig('%ssignal_rmse_b%s.png' % (figure_path, bval))

    vol = ozu.nans(snr.shape)
    vol[mask_idx] = snr[mask_idx]
    fig = viz.mosaic(t1_d.T[23:-12], cmap=matplotlib.cm.bone, cbar=False)
    fig = viz.mosaic(vol.T[23:-12], fig=fig, cmap=matplotlib.cm.hot)
    fig.set_size_inches([15, 10])
    fig.savefig('%ssignal_snr_b%s.png' % (figure_path, bval))

    rmse_mask = signal_rmse[mask_idx]
    fig_hist_rmse = viz.probability_hist(rmse_mask[np.isfinite(rmse_mask)],
                                         bins=100,
                                         fig=fig_hist_rmse,
    

for b_idx, file_root in enumerate(file_roots): 
    

    vol = np.ones((81,106,76,4)) * np.nan

    for chunk in range(n_chunks):
        if vox_per_chunk*chunk+1 > brain_idx.shape[-1]:
            this_idx = brain_idx[:,vox_per_chunk * chunk:]
        else:
            this_idx = brain_idx[:,vox_per_chunk * chunk:vox_per_chunk*(chunk+1)]
        mask_array = np.zeros((81, 106, 76))
        mask_array[(this_idx[0], this_idx[1], this_idx[2])] = 1
        params_file = '/home/arokem/data/ModelFits/MultiCanonicalTensor2/MultiCanonicalTensorb%s_%03d.nii.gz'%(all_bvals[b_idx], chunk+1)
        this_params = ni.load(params_file).get_data()
        mask_idx = np.where(mask_array)
        vol[mask_idx] = this_params[mask_idx]
    
    fig = viz.mosaic(vol[:,:,:,-1])
    fig.set_size_inches([20,18])

    ni.Nifti1Image(vol, ni.load(params_file).get_affine()).to_filename(
                    '/home/arokem/data/ModelFits/MultiCanonicalTensor/MultiCanonicalTensorCombinedb%s.nii.gz'%all_bvals[b_idx])
    
    
    
    
    
    
Ejemplo n.º 5
0
        # Force a save of the params to file:
        Model.model_params

for b_idx, file_root in enumerate(file_roots):

    vol = np.ones((81, 106, 76, 4)) * np.nan

    for chunk in range(n_chunks):
        if vox_per_chunk * chunk + 1 > brain_idx.shape[-1]:
            this_idx = brain_idx[:, vox_per_chunk * chunk:]
        else:
            this_idx = brain_idx[:, vox_per_chunk * chunk:vox_per_chunk *
                                 (chunk + 1)]
        mask_array = np.zeros((81, 106, 76))
        mask_array[(this_idx[0], this_idx[1], this_idx[2])] = 1
        params_file = '/home/arokem/data/ModelFits/MultiCanonicalTensor2/MultiCanonicalTensorb%s_%03d.nii.gz' % (
            all_bvals[b_idx], chunk + 1)
        this_params = ni.load(params_file).get_data()
        mask_idx = np.where(mask_array)
        vol[mask_idx] = this_params[mask_idx]

    fig = viz.mosaic(vol[:, :, :, -1])
    fig.set_size_inches([20, 18])

    ni.Nifti1Image(
        vol,
        ni.load(params_file).get_affine()
    ).to_filename(
        '/home/arokem/data/ModelFits/MultiCanonicalTensor/MultiCanonicalTensorCombinedb%s.nii.gz'
        % all_bvals[b_idx])
    # equivalent TensorModel, using the
    # method outlined in Stikov et al. 2011):
    # Add [0,1] to force the axes to be [0,1]
    fig = viz.scatter_density(np.hstack([to_hist1[idx],[0,1]]),
                    np.hstack([TM1.fiber_volume_fraction[Model1.mask][idx],
                               [0,1]]))
    fig.axes[0].set_xlabel('Tensor parameter')
    fig.axes[0].set_ylabel('FVF')
    fig.set_size_inches([10,10])
    fig.axes[0].plot([100,0],[0,100],'--k')
    fig.savefig('/home/arokem/Dropbox/DWI_figures/CanonicalTensor_fvf%s.png'%b)
    

    T1 = ni.load(data_path + 'FP_t1_resampled_to_dwi.nii.gz').get_data()

    fig = viz.mosaic(T1.T, cmap=matplotlib.cm.bone, cbar=False)
    fig = viz.mosaic(Model1.model_params[:,:,:,1].T,
                     fig=fig, cmap=matplotlib.cm.hot, vmax=1)
    fig.set_size_inches([12,8])
    fig.savefig('/home/arokem/Dropbox/DWI_figures/CanonicalTensor_tensor_param%s.png'%b)
    
    fig = viz.mosaic(T1.T, cmap=matplotlib.cm.bone, cbar=False)
    fig = viz.mosaic(Model1.model_params[:,:,:,2].T,
                     fig=fig,
                     cmap=matplotlib.cm.hot,
                     vmax=1)
    fig.set_size_inches([12,8])
    fig.savefig('/home/arokem/Dropbox/DWI_figures/CanonicalTensor_sphere_param%s.png'%b)


    fractional_anisotropy = (