Ejemplo n.º 1
0
    def solve(self, p):

        m = osqp.OSQP()

        STATUS_MAP = {
            m.constant('OSQP_SOLVED'): qp.OPTIMAL,
            m.constant('OSQP_MAX_ITER_REACHED'): qp.MAX_ITER_REACHED,
            m.constant('OSQP_PRIMAL_INFEASIBLE'): qp.PRIMAL_INFEASIBLE,
            m.constant('OSQP_DUAL_INFEASIBLE'): qp.DUAL_INFEASIBLE
        }

        if p.P is not None:
            p.P = p.P.tocsc()

        if p.A is not None:
            p.A = p.A.tocsc()

        if p.i_idx is not None:
            raise ValueError('Cannot solve MIQPs with OSQP')

        m.setup(p.P, p.q, p.A, p.l, p.u, **self.options)
        res = m.solve()

        status = STATUS_MAP.get(res.info.status_val, qp.SOLVER_ERROR)

        return QuadprogResults(status, res.info.obj_val, res.x, res.y,
                               res.info.run_time, res.info.iter)
Ejemplo n.º 2
0
P = spa.csc_matrix(np.array([[11., 0.], [0., 0.]]))
q = np.array([3., 4.])

A = spa.csc_matrix(np.array([[-1.0, 0.], [0., -1.], [-1., 3.],
                             [2., 5.], [3., 4]]))
l = -np.inf * np.ones(A.shape[0])
u = np.array([0., 0., -15., 100., 80.])

n = P.shape[0]
m = A.shape[0]


#  A = None
#  l = None
#  u = None

# OSQP options
osqp_opts = {'rho': 1.0,
             'check_termination': 1,
             'max_iter': 2500}

# Solve problem with OSQP
m = osqp.OSQP()
m.setup(P, q, A, l, u, **osqp_opts)
res = m.solve()

# Solve problem with OSQPPUREPY
m = osqppurepy.OSQP()
m.setup(P, q, A, l, u, **osqp_opts)
res = m.solve()
Ejemplo n.º 3
0
osqp_opts = {'rho': rho,
             'adaptive_rho': True,
             'adaptive_rho_interval': 25,
             'sigma': 1e-06,
             'scaled_termination': False,
             'check_termination': 1,
             'polish': False,
             'verbose': True,
             'linsys_solver': 'suitesparse ldl'
             }

qp = mpbpy.QuadprogProblem(P, q, A, l, u)
res_gurobi = qp.solve(solver=mpbpy.GUROBI, verbose=True)

model = osqppurepy.OSQP()
model.setup(P=P, q=q, A=A, l=l, u=u, **osqp_opts)
res_osqppurepy = model.solve()

# Solve with SuiteSparse LDL
model = osqp.OSQP()
model.setup(P=P, q=q, A=A, l=l, u=u, **osqp_opts)
res_osqp = model.solve()


# Check difference with gurobi
if res_gurobi.status == 'optimal':
    print("Difference OSQP vs Gurobi")
    print("  - primal = %.4f" %
          (np.linalg.norm(res_gurobi.x - res_osqp.x) /
           np.linalg.norm(res_gurobi.x)))
Ejemplo n.º 4
0
import pickle

# Load one problem
with open('./data/%s.pickle' % 'helicopter_scaling_medium', 'rb') as f:
    problem = pickle.load(f)

# OSQP settings
osqp_settings = {
    'verbose': True,
    'scaling': True,
    'scaling_iter': 50,
    'early_terminate_interval': 1,
    'auto_rho': True,
    'rho': 0.01,
    'polish': False
}

# Solve with OSQP
model = osqp.OSQP()
model.setup(problem['P'], problem['q'], problem['A'], problem['l'],
            problem['u'], **osqp_settings)
res_osqp = model.solve()

# Solve with GUROBI
import mathprogbasepy as mpbpy
qp = mpbpy.QuadprogProblem(problem['P'], problem['q'], problem['A'],
                           problem['l'], problem['u'])
res_gurobi = qp.solve(solver=mpbpy.GUROBI, verbose=False)
print("GUROBI time = %.4e" % res_gurobi.cputime)
print("OSQP time = %.4e" % res_osqp.info.run_time)
Ejemplo n.º 5
0
import osqppurepy
import matplotlib.pyplot as plt

# Get data
f = '../../../../extra/difficult_problems/data/polish_fail.mat'
m = spio.loadmat(f)
P = m['P']
A = m['A']
q = m['q'].T.flatten()
l = m['l'].T.flatten()
u = m['u'].T.flatten()

# Solve problem
osqp_opts = {'polish': True,
             'check_termination': 1}
prob = osqppurepy.OSQP()
prob.setup(P=P, q=q, A=A, l=l, u=u, **osqp_opts)
res = prob.solve()

# Compute primal and dual residuals for the points obtained from line search
N = len(res.linesearch.t)
pri_res_ls = np.zeros(N)
dua_res_ls = np.zeros(N)
X_ls = res.linesearch.X
Z_ls = res.linesearch.Z
Y_ls = res.linesearch.Y

for i in range(N):
    pri_res_ls[i] = la.norm(A.dot(X_ls[i, :]) - Z_ls[i, :], np.inf)
    dua_res_ls[i] = la.norm(P.dot(X_ls[i, :]) + q + A.T.dot(Y_ls[i, :]), np.inf)