Ejemplo n.º 1
0
def test_kisa2 () :
       
    from ostap.fitting.selectors import SelectorWithVars, Variable  
    variables = [
        Variable   ( 'mass'  , 'mass(mu+mu-)' ,  3.09 , 3.11 ) , 
        Variable   ( 'c2dtf' , 'chi2(dtf)'    , -1    , 10   ) , 
        Variable   ( 'mass2' , 'mass(mu+mu-)' , 1 , 5 , MASS()  ) , 
        Variable   ( 'mass3' , 'mass(mu+mu-)' , 1 , 5 , 'mass'  ) 
        ]
    
    from sys import version_info  as python_version
    if  python_version.major < 3 :
        variables.append ( Variable ( 'mass1' , 'mass(mu+mu-)' , 2 , 4 , lambda s : s.mass ) )

    
    ppservers = () ## 'lxplus051' , )
    ## ppservers = 'auto'
    
    nf   = len ( data.files )
    nf //= 40
    nf  += 1 
    nf   = min ( nf , 25 )
    
    with timing('%d files in sequence %s' % ( nf , len( data.chain )  ) ) :
        selector = SelectorWithVars  (
            variables = variables ,
            selection =  '2<=mass && mass<4 && 0<=c2dtf && c2dtf<5' ,
            silence   = False
            )
        chain =  data.chain[:nf]
        st = chain.process ( selector , silent = False , shortcut = True )
        ds = selector.data
        del selector 
    logger.info ( 'Dataset:\n%s' % ds )
    
    with timing('%s files in parallel %s' % ( len ( data.files ) , len( data.chain ) ) ) :
        selector = SelectorWithVars  (
            variables = variables ,
            selection =  '2<=mass && mass<4 && 0<=c2dtf && c2dtf<5' ,
            silence   = True 
            )
        st = data.chain.pprocess ( selector               ,
                                   silent     = False     ,
                                   chunk_size = -1        ,
                                   max_files  =  1        ,
                                   ppservers  = ppservers )
        ds = selector.data 
        del selector 
    logger.info ( 'Dataset:\n%s' % ds )
Ejemplo n.º 2
0
from ostap.fitting.selectors import SelectorWithVars, Variable
import ostap.parallel.parallel_fill

# =============================================================================
## configuration of reweighting
weightings = (
    ## variable          address in DB
    Weight.Var('x', 'x-reweight'),
    Weight.Var('y', 'y-reweight'),
    Weight.Var(('x', 'y'), '2D-reweight'),
)

# =============================================================================
## variables to be used in MC-dataset
variables = [
    Variable('x', 'x-var', 0, 20),
    Variable('y', 'y-var', 0, 15),
]
selector = SelectorWithVars(variables,
                            '0<x && x<20 && 0<y && y<20',
                            silence=True)
mctree.process(selector, silent=True)
mcds_ = selector.data  ## dataset
# =============================================================================
## start reweighting iterations:
for iter in range(1, maxIter + 1):

    logger.info(allright('Reweighting iteration %d ' % iter))

    with timing('Prepare MC-dataset:', logger=logger):
        # =========================================================================
Ejemplo n.º 3
0
from ostap.fitting.selectors   import SelectorWithVars, Variable 

## start iterations:
for iter in range ( 0 , maxIter ) :

    weightings = (
        ## variable          address in DB    
        Weight.Var ( lambda s : s.x       , 'x-reweight'  ) , 
        Weight.Var ( lambda s : s.y       , 'y-reweight'  ) , 
        Weight.Var ( lambda s : (s.x,s.y) , '2D-reweight' ) , 
        )
    
    weighter   = Weight( dbname , weightings )
    ## variables to be used in MC-dataset 
    variables  = [
        Variable( 'x'      , 'x-var'  , 0  , 20 , lambda s : s.x ) ,  
        Variable( 'y'      , 'y-var'  , 0  , 15 , lambda s : s.y ) , 
        Variable( 'weight' , 'weight' ,    accessor = weighter   )  
        ]
    
    #
    ## create new "weighted" mcdataset
    # 
    selector = SelectorWithVars (
        variables ,
        '0<x && x<20 && 0<y && y<20'
        )

    mctree.process ( selector )
    mcds = selector.data             ## new reweighted dataset
Ejemplo n.º 4
0
    os.remove ( trainer.output_file )

# =============================================================================
## Use trained TMVA
#  There are two alternatives
#  - usage of TMVA Reader : it can be  rather slow,
#    but it is very flexible and powerful with respect to variable transformations
#  - addTMVAResponse function : it is less flexible, but very CPU efficient 
# =============================================================================

## prepare dataset with TMVA result

from ostap.fitting.selectors import SelectorWithVars, Variable     
## 1) Book RooDataset                 
variables = [
    Variable( 'var1' , 'variable#1' ) ,
    Variable( 'var2' , 'variable#2' ) ,
    Variable( 'var3' , 'variable#3' ) ,
    ]

## 2) create TMVA reader
from ostap.tools.tmva import Reader
reader = Reader( 'MyMLP' ,
                 variables     = [ ('var1' , lambda s : s.var1 )   ,
                                   ('var2' , lambda s : s.var2 )   ,
                                   ('var3' , lambda s : s.var3 ) ] ,
                 weights_files = tar_file   )

methods = reader.methods[:]

## # =============================================================================
Ejemplo n.º 5
0
# 
from ostap.tools.reweight     import Weight, makeWeights, WeightingPlot
from ostap.fitting.selectors  import SelectorWithVars, Variable 

## start iterations:
for iter in range ( 0 , maxIter ) :

    weighting = (
        ## variable          address in DB    
        Weight.Var( accessor = lambda s : s.x , address = 'x-reweight'  ) , 
        )
    
    weighter   = Weight( dbname , weighting )
    ## variables to be used in MC-dataset 
    variables  = [
        Variable ( 'pt_x'   , 'pt_x'   , 0  , 100 , lambda s : s.x ) , 
        Variable ( 'weight' , 'weight' , accessor =  weighter       )  
        ]
    
    #
    ## create new "weighted" mcdataset
    # 
    selector = SelectorWithVars (
        variables ,
        '0<x && x<100 '
        )
    
    mctree.process ( selector )
    mcds = selector.data             ## new reweighted dataset

    #
Ejemplo n.º 6
0
#
from ostap.tools.reweight import Weight, makeWeights, WeightingPlot
from ostap.fitting.selectors import SelectorWithVars, Variable

## start iterations:
for iter in range(0, maxIter):

    weighting = (
        ## variable          address in DB
        Weight.Var('x', address='x-reweight'), )

    weighter = Weight(dbname, weighting)
    ## variables to be used in MC-dataset
    variables = [
        ## Variable ( 'x'  , 'x-variable' , 0  , 100 , lambda s : s.x ) ,
        Variable('x', 'x-variable', 0, 100),
        Variable('weight', 'weight', accessor=weighter)
    ]

    #
    ## create new "weighted" mcdataset
    #
    selector = SelectorWithVars(variables, '0<x && x<100 ')

    mctree.pprocess(selector, chunk_size=len(mctree) // 20)
    ##mctree.process ( selector )
    mcds = selector.data  ## new reweighted dataset

    #
    ## update weights
    #
Ejemplo n.º 7
0
for iter in range ( 0 , maxIter ) :

    weightings = (
        ## variable          address in DB    
        #Weight.Var ( lambda s : s.x       , 'x-reweight'  ) , 
        #Weight.Var ( lambda s : s.y       , 'y-reweight'  ) , 
        #Weight.Var ( lambda s : (s.x,s.y) , '2D-reweight' ) , 
        Weight.Var (  'x'      , 'x-reweight'  ) , 
        Weight.Var (  'y'      , 'y-reweight'  ) , 
        Weight.Var ( ('x','y') , '2D-reweight' ) , 
        )
    
    weighter   = Weight( dbname , weightings )
    ## variables to be used in MC-dataset 
    variables  = [
        Variable ( 'x'      , 'x-var'  , 0  , 20 ) , 
        Variable ( 'y'      , 'y-var'  , 0  , 15 ) ,
        Variable ( 'weight' , 'weight' , accessor = weighter )  
        ]
    
    #
    ## create new "weighted" mcdataset
    # 
    selector = SelectorWithVars (
        variables ,
        '0<x && x<20 && 0<y && y<20'
        )

    mctree.pprocess ( selector , chunk_size = len(mctree) // 20 )
    
    mcds = selector.data             ## new reweighted dataset
Ejemplo n.º 8
0
else:
    logger.info('Existing weights DBASE will be used')

#
## make reweighting iterations
#
from ostap.tools.reweight import Weight, makeWeights, WeightingPlot, W2Data
from ostap.fitting.selectors import SelectorWithVars, Variable
import ostap.parallel.parallel_fill

# =============================================================================
## weighting configuration: ## variable     address in DB
weighting = (Weight.Var('x', address='x-reweight'), )
# ============================================================================
## variables to be used in MC-dataset
variables = [Variable('x', 'x-variable', 0, 100)]

# =============================================================================
## start iterations:
for iter in range(1, maxIter + 1):

    logger.info(allright('Reweighting iteration %d ' % iter))

    with timing('Prepare MC-dataset:', logger=logger):

        # =============================================================================
        ## 0) The weighter object
        weighter = Weight(dbname, weighting)

        # ===============================================================================
        ## 1a) create mcdataset
Ejemplo n.º 9
0
methods = reader.methods[:]

# =============================================================================
## 1') few trivial tests: use the methods/reader as simple function
for m in methods :
    method   = reader[m]
    ## response = [ method ( i  , 1.1 , 0.8 , 0.3 ) for i in  range ( reader.N ) ] 
    response = method.stat ( 1.1 , 0.8 , 0.3 )
    logger.info ( 'Simple test: method %10s,response %s' % ( m , response ) )
    del method 
# =============================================================================

from ostap.fitting.selectors import SelectorWithVars,  Variable     
## 2) Book RooDataset                 
variables = [
    Variable ( 'var1' , 'variable#1' ) ,
    Variable ( 'var2' , 'variable#2' ) ,
    Variable ( 'var3' , 'variable#3' ) ,
    ## extra: needed for addChoppingResponse 
    Variable ( 'evt'  , 'event'      ) ,
    Variable ( 'run'  , 'run'        ) ,
    ## extra: needed for cross-checks  
    Variable ( 'cat'  , 'category'   , accessor = category ) ,
    ]

## 3) declare/add TMVA  variables 
for m in methods :
    variables += [ Variable ( 'tmva_%s' % m , 'TMVA(%s)' % m , accessor = reader[m] ) ]
    
## 4)  Run Ostap to   fill   RooDataSet 
from ostap.fitting.selectors import SelectorWithVars     
Ejemplo n.º 10
0
## Use trained TMVA/Chopping
#  There are two alternatives
#  - usage of TMVA/Chopper Reader : it can be  rather slow,
#    but it is very flexible and powerful with respect to variable transformations
#  - addChoppingResponse function : it is less flexible, but very CPU efficient
# =============================================================================

## category function
category = lambda s: int(s.evt * 137 + 813 * s.run) % N

## prepare dataset with TMVA/Chopping result

from ostap.fitting.selectors import SelectorWithVars, Variable
## 1) Book RooDataset
variables = [
    Variable('var1', 'variable#1'),
    Variable('var2', 'variable#2'),
    Variable('var3', 'variable#3'),
    ## extra: needed for addChoppingResponse
    Variable('evt', 'event'),
    Variable('run', 'run'),
    ## extra: needed for cross-checks
    Variable('cat', 'category', accessor=category),
]

## 2) create TMVA/Chopping reader
from ostap.tools.chopping import Reader

reader = Reader(
    N=N,  ##  number of   categories
    categoryfunc=category,  ## category